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FOREWORD
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ministered under the direction of the Flight Control Laboratory, Directorate
of Laboratories, Wright Air Development Center, with Mr. R. J. Woodcock and
Lt. H. M. Davis acting successively as project engineers.

The project was carried on by the Dynamics Group of the J. B. Rea
Company with Mr. L. G. Campbell, Jr. (Chapters I, VIII, and IX) as project
engineer. Members of the Dynamics Group who participated were Mr. R. P.
Walton (Chapter VII) and Mr. L. D. Stimpson, Jr. (Chapter VIII). The con-
sultants of the J. B. Rea Company who co-operated in the writing of the mater-
ial were Dr. J. W. Miles (Chapters II, III, and V), Dr. W. T. Thomson (Chapter
IV), both of the University of California at Los Angeles, Dr. : '. C. Fung
(Chapters II and V) of the California Institute of Technolog;, &:,id Mr. N. L.
Wener (Chapter IX) of Convair, San Diego, California.
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ABSTRACT

The purpose of this volume is to present sufficient techr,ical mterial
to enable a practicing dynamics engf-,er to understand various aeroelastic
phenomena and to give inett pr - or incorporating aeroelastic effects in equati .ns
of motion as well as techn:u.es for obtaining the solutions. Matrix methods
are emphasized throughout because of their generality.

The presentation of the material is by "example" rather than by a manual
approach, because many of the techniques of analysis are still in 3. state of
development; moreover these techniques are highly dependent upon the aircraft
configuration and flight regime involved.

The first five chapters present basic concepts and theories of elasticity
and aerodynamics; Chapters VI and VII contain applications to airplanes (which
can be extended to missiles) and helicopters, Chapters VIII and IX describe
the solution techniques as well as methods for analyzing flight test data
relative to aeroelastic analyses.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

Colonel, USAF
Chief, Flight Control Laboratory
Directorate of Laboratories

VADC TR 55-173 iii



TABLE OF CONTENTS

er Page

I Introduction i

1.0 Scope of Book 1

1.1 Purpose of the Book 1,

1.2 Material Included in Book 1

II Basic Concepts 2

2.0 introduction 2

2.1 Descriptions of Parameters 2

2.1.1 Aeroelastic Parameters 2
2.1.2 Frequency Parameters 3
2.1.3 Structural Damping 4

2.2 Static Aeroelastic Effects 4

2.2.1 Torsional Deflection and Divergence 4
2.2.2 Control Surface Effectiveness and 'Reversal 7
2.2.3 Fuselage Bending 15
2.2.4 Swept Wing Deflections 18
2.2.5 Static Aeroelastic Correction of Stability Derivatives 22

2.3 Lift Distribution on an Elastic Wing 23

2.3.1 The Lift Curve Slope 23
2.3.2 Spanwise Lift. w stribution at Subsonic Speeds 27
2.3.3 Aerodynamic Influence Coefflcients at Subsonic Speeds 36
2.3.4 The Effect of Elastic Deformation on the Lift Distri-

bution 39

References 47

Nomenclature 49

III Derivation of Equations of Motion 53

3.0 Introduction 53

3.1 Modal Approach 56

3.2 Collocation Approach Using Matrices 60

3.2.1 Dynamic Stability Equations for Rigid Airplane 60

3,2.1.1 Eqouations of Motion in Body Axes 61
3.2.1.2 Dimensionless Notation 65
3.2.1.3 Dimensionless Longitudinal Stability Equations 66

WADC TR 55-173 iv



TABLE OF CONTENTS (continued)

haptr Page

III 3.2.1.4 Dimensionless Lateral Stability Equations 70

3.2.2 Dynamic Stability Equations for Elastic Airplane 73

3.2.2.1 Longitudinal Stability Equations for Elastic
Airframe 73

3.2.2.2 Lateral Stability Equations for Elastic Airframe 80
3.2.2.3 Quasi-Static Solution for Elastic Deflections 85
3.2.2.4 Steady Flight Aeroelastic Problem 87
3.2.2.5 Free Vibration Problem 88
3.2.2.6 Galerkin Formulation of Aeroelastic Equations 89
3.2.2.7 Breakdown of Aeroelastic Problem 93

3.3.1 Autopilot Effects 94

References 96
Nomenclature 101
Appendix 103

IV Determination of Elas'1.c Effects o6

4.0 Introduction o6

4.1 Elastic Concepts 106

4.1.1 Dynamic Representation of Elastic Structures 107

4.1J.1 Elastic Effects 107
4.1,1.2 Inertial Mass and Mcment Effects 110
4.1.1.3 Structural Damping Effect ll

4.1.2 Principal and Normal Modes of Oscillation 112
4.1.3 Coupling of Motion 113
4.1.4 Equations for a Beam in Bending and Torsion 115

4.1.4.1 Bending 115
4.1.4.2 Torsion 116
4.1.4.3 Bending-Torsion 117

4.2 Methods for Ccputing Normal Modes 117

4.2.1 Rayleigh's Energy Method 120

4.2.1.1 Rayleigh-Ritz Extension 121

4.2.2 Stodola Method 122
4.2.3 Tabular Methods 123

4.2.3.1 Holzer Method 123
4.2.3.2 Holzer-Myklestad Method for Bending Vibrations 124
4.2.3.3 Uncoupled Bending Vibrations 124

WADC TR 55-173



iI

TABLE OF CONTENTS (continued)

Chapter Page

IV 4.2.3.4 Influence Coefficients 128
4.2.3.5 Coupled Bending-Torsion Vibration 130
4.2.3.6 Swept Wings 133 4

4.2.4 Method of Matrix Iteration 136

4.2.4.1 Matrix Representation Including Rigid Body
Motion 140

4.2.5 Beam Vibrations in a Centrifugal Field 144

4.2.5.1 Holzer-Myklestad Method for the Rotating Beam 146

4.3 Analysis of Coupled Systems 147

4.3.1 Generalized Coordinates and Lagrange's Equation 147

4.3.1.1 Effective Mass and Inertia Parameters 150
4.3.1.2 Tra'sient Response Parameters 152

4.3.2 Coupled Mode Analysis 153
4.3.3 Coupling of Control Surfaces 16o

References 166
Nomenclature 169

V Determination of Aerodynamic Effects 172

5.0 Introduction 172

5.1 Summary 173

5.1.1 Significance of the Unsteady Flow Effect 173

5.2 Survey of Basic Concepts and Analytical Results in the First
Order Unsteady Flow Theory 175

5.2.1 Aerodynamic Concepts 175

5.2.1.1 Linearized Aerodynamic Theory 175
5.2.1.2 Quasi-Stationary and First Order Theories 176
5.2.1.3 Aerodynamih Effects of Various Motions 180
5.2.1.4 Basic Wing Problem 182

5.2.2 High Aspect Ratio Wings in Subsonic Flow 183

5.2.2.1 Two-Dimensional Incompressible Flow 184
5.2.2.2 Two-Dimensional Compressible Flow 188
5.2.2.3 Lifting-Line Theory for Incompressible Flow 190
5.2.2.4 Lifting Surface Theories for Subsonic Flow 193
5.2.2.5 Subsonic Compressibility Correction 194
5.2.2.6 Swept Wings in Subsonic Flow 196

5.2.3 Supersonic Wings, Piston Theory 198

WADC TR 55-173 vi

I



TABLE OF CONTENTS (cnmtinued)

Chapter Page

V 5.2.3.1 Reduction of Unsteady Flow to Steady
Flow Problems 199

5.2.3.2 Two-Dimensional Supersonic Flow 201
5.2.3.3 Simple Planforms 202
5.2.3.4 Lifting Surface Integral Ecuation for Super-

sonic Flow 205
5.2.3.5 Evvard's Method 207

5.2.3.6 Aerodynamic Influence Coefficients 219

5.2.4 Slender Body Theory 220

5.2.4.1 Slender Body of Revolution 221
5.2.4.2 Low Aspect Ratio Wings 222
5.2.4.3 Slender Wing-Body Ccarbination 223
5.2.4.4 Quasi-Slender Wing Theory 223

5.2.5 Downwash Calculations 227

5.3 Summary of Results in the Theory of Oscillatig Airfoil in Two-
Dimensional Flow 228

5.3.1 Oscillating Airfoils in Two-Dimensional Incompressible
Flow 228

5.3.1.1 Theodorsen's Function 228
5.3.1.2 Rear Aerodynamic Center 229
5.3.1.3 General Solution 230
5.3.1.4 Flutter Aerodynamic Coefficients 231
5.3.1.5 Tabulation of Results - Two-Dimensional In-

compressible Flow 236

5.3.2 Oscillating Airfoils in Two-Dimensional Subsonic Flow 236
5.3.3 Oscillating Airfoils in Two-Dimensional Supersonic Flow 237
5.3.4 Oscillating Airfoils in Two-Dimensional Transonic Flow 244

5.4 Oscillating Finite Wings and Bodies 244

5.4.1 Oscillating Finite Wing, Incompressible Flow 245
5.4.2 Oscillating Finite Wing, Subsonic Flow 247
5.4.3 Oscillating Finite Wing, Supersonic Flow 250

5.5 Indicial Response of Airfoil to Step Function Input 250

5.5.1 Aerodynamic Forces Acting on Thin Airfoils in Unsteady
Motion - Two-Dimensional Incompressible Flow 250

5.5.2 Wagner's Function, (t) 254
5.5.3 Finite Aspect Ratio Effect, Incompressible Flow 255
5.5.4 Kussner's Function, 1(i), Incompressible Flow 255
5.5.5 Indicial Response in Tifo-Dimensional Subsonic Flow 256
5.5.6 Indicial Response in Two-Dimensional Supersonic Flow 260

5.5.7 Indicial Response at Mach Equal to 1 261

WADC TR 55-173 vii



TABLE OF CONTENTS (continued)

CatrPage

V 5.5.8 Sinusoidal Gusts 261

5.6 Stability Derivatives 263

5.6.1 Application of Oscillating Wing Theory to Unstee-y
Motion 263

5.6.2 Transformation of Coordinate Anes 266
5.6.3 Wing Wash Effects in the Vicinity of the Tail 266
5.6.4 Stability Derivatives of the Airplane 268

5.7 The Influence of Elastic Deformation of the Structure 270

5.7.1 Introduction 270
5.7.2 Methods for Investigating the Effects of Structural

Distortions 271
5.7.3 Influence of the Flexibility of the Fuselage - An

Example of the Modified Derivatives from the Modal
Approach 272

5.7.3.1 Quasi-Static Solution, Modified Derivatives 275
5.7.3.2 Static Stability 279

5.7.4 Modified Derivatives from the Collocation Approach 280
5.7.5 Modified Derivatives from the Modal Approach 281
5.7.6 Simplified Estimates of the Static Aeroelastic

Effects on the Longitudinal Stability and Control 282
5.7.7 Simplified Estimates of the Static Aeroelastic

Effects on the Lateral Stability and Control 285

References 288
Nomenclature 298
Appendix A 301
Appendix B 304

mo Appendix C 307

VI Aeroelastic Equations of Motion for an Airplane 309

6.0 Introduction 309

6.1 Ncmenclature 309

6.1.1 Axis System 309
6.1.2 General Assumptions 309
6.1.3 List of Symbols 311

6.2 General Longitudinal Equations of Motion Including Two
Normal Modes 318

6.3 Derivation of the Generalized Forces for the Equations of
Motion in 'S and S2 Coordinates 338

WADC TR 55-173 viii



TABLE OF CONTENTS (continued)

Chapter ,ge

VI 6.4 Derivation of Normal Mode Derivatives 347

6.5 An Analysis of the Coupling Between an Autopilot System

and Airframe Elastic Modes 353

References 357

VII Aeroelastic Equations of Motion for a Helicopter 358

7.0 Introduction 358

7 Method of Approach 358

7.1.1 Axis System and Coordinate System 358

7,1.2 Development of the Linear Equations for the Helicopter 359
7.1.3 Modal Analysis 362

7.1.3.1 Mode Shapes 363

7.2 Equations of Motion - (Rigid Plus Aeroelastic) 366

7.2.1 Assumptions 367
7.2.2 Coordinates 368
7.2.3 Body Forces and Mcments 371

7.2.4 Total Aeroelastic Equations of Motion 379
7.2.5 The Stability Equation 381

7.3 Illustrative Example 384

7.3.1 Statement of Problem 384
7.3.2 Equations of Motion 387
7.3.3 Obtaining the Result 392

-4 7.4 Illustration of the Use of a Root Locus Plot to Demonstrate
mo the Effect of Torsior and Flexibility of the Blade on Heli-

copter Stability 399

7.4.1 Inclusion of Torsional Effects 399

7.4.1.1 Torsional Mode and Stiffness Factor 400

7.4.2 Rigid Body 401
7.4.3 Aeroelastic Cz.se 402

7.5 Summary 403

Nomenclature 408
References 414
Bibliography 416

VIII Methods for Solving Aeroelastic Equations 417

WADC TR 55-173 ix



TABLE OF CONTENTS (continued)

Chapter Page

VIII 8.0 Introduction 417

8.1 Development of Solution Forms of Equations of Motion 419

8.2 Digital Machines 422

8.2.1 Solution of Equations of Motion 422

8.2.1.1 Point by Point Solution to Obtain Frequency
Responses 423

8.2.1.2 Polynomial Solution of Transfer Functions 426

8.3 Analog Machines 432

8.3.1. Application to Aeroelastic Analysis 433

References 440 '
Bibliography 441
Appendix 444

IX Flight Testing 450

9.0 Introduction 45o

9.0.1 Objectives 45o
9.0.2 Comparison of Experiment and Theory 450

9.1 Data Requirements 451

9.1.1 General 451
9.1.2 Data for Evaluation of Flight Dynamics 451
9.1.3 Data for Checking Aeroelastic Theory 452

9.2 Ground Tests 454

9.2.1 General 454
9.2.2 Weight and Balance 454
9.2.3 Structural Vibratory Modes 455
9.2.4 Structural Influence Coefficients 255

9.3 Flight Test TLhniques 457

9.3.1 Static Stability Tests 457
9.3.2 Dynamic Stability Tests 458

9.4 Instrumentation 460

9.4.1 Sensor Locations 460
9.4.2 Sensor Characteristics 461
9.4.3 Recording System 462

WADC TR 55-173 x



TABLE OF CONTENTS (continued)

Chapter rage

IX 9.5 Flight Test Procedures 462

9.5.1 Flight Conditions 462
9.5.2 Test Operations 464

9.6 Data Analysis Procedures 465

9.6.1 Time-to-Frequency-Plane Transformation 465
9.6.2 Techniques for Smoothing Data 468

9.6.2.1 Fourier Series 469

9.6.2.2 Weighting Functions 469

9.6.3 Techniques for Analyzing Dynamic Flight Test Data 471

9.6.3.1 Methods for Determining Aerodynamic Co-
efficients from Transient Data 472

9.6.3.2 Methods for Determining Aerodynamic Co-
efficients from Frequency Response Data 478

9.6.3.3 Simplified Analysis Procedures 482

9.6.4 Techniques for Performing Error Analyses 484

References 486

Bibliography 490
Ncmenclature 493

WADC TR 55-173 xi



CHAPTER I

INTRODUCTION

1.0 Scope of Book

The phenomenon of coupling between aerodynamics and airfrme elasticity
is known as aeroelasticity. Aircraft flying at high subsonic and supersonic
speeds need both thin wing sections and thin fuselages in order to reduce the
drag forces. In general, these thin structures have considerable flexibility
which tends to accentuate static and/or dynamic coupling between the aero-
dynamics and elasticity. For example, the elastic swept wing in bending
introduces an effective change in the angle of attack that results in a dif-
ferent aerodynamic force than if the wing were rigid. The structural elasticity
also leads to reduced control effectiveness as well as changes in the downwash
flow pattern that are important to the tail effectiveness. Transient maneu-
vers or gusts will cause a flexible aircraft to experience dynamic aeroelastic
phenomena which ca± be very different fra static aeroelasticity when the time
lag in the build up of the flow pattern is considered.

Of special. importanice to the dynamic stability and control engineer is
the dependence of the latest aircraft "apon automatic control equipment. The
use of automatic controls in a flexible aircraft can result in undesirable
coupling between the elasticity of the structure and the automatic equipment,
even to the extent of causing instability in flight. For these and other
reasons it is becoming more important to consider the aeroelasticity in the
analyses required for the design of new aircraft.

1.1 Pu~rpose of the Book

The purpose of this book is to present the basic concepts needed by
engineers in understanding the techniques for incorporating aeroelastic
effects in stability and control analyses of aircraft as well as to give
practical procedures for performing such analyses. To accomplish this in
a single volume only those concepts necessary for understanding the methods
are covered and only the most practical and currently used procedures are
outlined. References are made to many books and articles which cover the
technical details and theories associated with each subject discussed.

1.2 Material Included in Book

The earlier chapters contain the background material needed for under-
standing the methods imployed and the physical principles involved. The
later chapters include applications of the methods to the analysis of air-
planes (missiles) and helicopters. The final chapters cover the use of
automatic computers in solving the equations as well as flight test analysis
methods relative to aeroelastic analyses.

WADC TR 55-173 1



CHAPTER II
BASIC CONCEPTS

2.0 Introduction

The proper assessment of aeroelasticity is facilitated by the intro-
duction of dimensionless parameters, which, in the absence of additional dy-
namic effects, provide some measure of the elastic deflection due to a given
aerodynamic load as compared with the displacement of the rigid airframe re-
quired to produce this load, However, then dynamic effects are associated
with elastic deflections, consideration required the introduction of addi-
tional pasameters Vased on the relative time scale of the motions, both with
respect to the motion of the airframe itself and also to the disturbances
set up in the air. The first class of parameters may be termed "static
aeroelastic", while the term "frequency parameters" provides an adequate
description of the second class.

2.1 Descriptions of Parameters

2.1.1 Static Aeroelastic Parameters. As a first example of an aero-
elastic parameter the ratio of airspeed to torsional divergence speed may be
cited. The torsional divergence speed is defined as that speed at which the
aerodynamic moment about the elastic axis of a wing, due to an incremental
twist about this axis, is just equal to moment due to twisting of the struc-
ture. It follows from this definition that any initial twist at this critical
speed continues to increase until structural failure occurs (or until some
equilibrium is reached by virtue of nonlinear effect). In any practical
design, attainable flight speeds must be well below the divergance speed; how-
ever, the importance of torsional deflection of the wing may be inferred from
the ratio of the actual speed to the divergence speed, and the latter therefore
appears as an important design parameter (see section 2.2.1 for further details).

A second aeroelastic parameter of considerable importance is the ratio
of flight speed to the aileron reversal speed. The latter is defined as -that
speed at which the adverse rolling moment due to the structural deformation
associated with aileron deflection just cancels the favorable rolling moment
produced by the ailerons. Again, a satisfactory design must never achieve
this speed, but aileron effectiveness falls nff rapidly as it is approached,
and therefore the ratio of actual airspeed to reversal speed serves as a sig-
nificant measure of this important aspect of aeroelasticity.

The existence of a sharply defined parameter in the two examples just cited
was associated with the hypothetical occurrence of a catastrophic event, but
there are equally important examples in which the measure of significance of
an elastic deflection is indicated by some aroitrarily defined ratio of an aero-
elastic airframe parameter to a corresponding rigid airframe parameter. For
example, fuselage bending always is in a direction to relieve the load on the
tail, and to reduce elevator effectiveness; and the bending is proportional

WADC TR 55-173 2



to net tail load. It is therefore appropriate to introduce an airspeed
at which fuselage bending reduces elevator effectiveness by some arbitrary
amount, say 50 percent.

2.1.2 Frequency Parameters. Aeroelastic parameters such as the fore-
going serve to measure the possible magnitude of aeroelastic effects and are
adequate for essentially static considerations (e.g., the calculation of
static margin or available rate of roll). For dynamic considerations, on the
other hand, it is necessary to establish some measure of the time lag be-
tween the application of load to the structure and the subsequent structural
deflection, this time lag being a consequence of the mechanical inertia of the
structure itself. In addition, *there generally will exist a first order aero-
dynamic lag between this deflection and the accession of the aerodynamic load.

In dynamic stability calculations an appropriate measure of mechanical
time lag is the ratio of the period of the mode of structural deformation
(e.g., wing bending) to that of the rigid body mode under consideration
(e.g., phugoid- or short period , longitudinal motions) or, equivalently,
the inverse ratio of frequencies (or better, the inverse squares of these
frequencies, since dynamic coupling is of this order). If the frequency of
an elastic mode of vibration is much in excess of the highest frequency of a
rigiC. body mode with which it might couple, the elastic deflections of the
airframe may be assumed to be in phase with the corresponding motion of the
airplane as a whole, even though it may be necessary to correct the aero-
dynamic forces on the airplane for these deflections. If, on the other hand,
these two frequencies are proximate,* there will be significant differences
in phase between the motions of the various parts of the airframe, and it
becomes imperative to introduce an additional degree of freedom for the
elastic mode of motion.

The mixing of rigid body and elastic modes tends to blur the conven-
tional line of demarcation between the field of dynamic stability and con-
trol and that of flutter; ultimately, it appears that the two may be dis-
tinguished, if at all, only be the purpose of the particular investigation
rather than the types of motion involved. Thus, the subject of dynamic
stability and control is concerned primarily with the motion of the airplane
as a whole, particularly in response to a prescribed excitation (e.g., a
gust or a control surface deflection). Flutter, on the other hand, is con-
cerned primarily with the possibility of self-excited oscillations of
particular parts of the airframe, usually involving coupling between two or
more elastic modes, in consequence of a motion that extracts energy from the
surrounding airflow. In this respect, it should be remarked that the flutter
analyst has found it necessary to incorporate certain rigid body motions in

* A rule-of-thumb generally applied is that if one natural frequency is within
a factor of three of the other, then a coupling effect may bp evidenced; for
under the square-law coupling, one is roughly ten percent affected by the other.
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his formulation of the flutter problem, so that it should not be surprising to
discover a reciprocal obligation on the part of the dynamic stability analyst.

Turning to the question of aerodynamic lag or unsteady flow effects, the
parameter most commonly introduced is the "reduced frequency"':

(an-ular frequency) (characteristic length) (2-)
= TT = 0fFght velociTy(

The frequency to be used in calculating K is that of the mode responsible for
the aeroelastic forces in question. The characteristic length usually chosen
is the wing semi-chord, but in dealing with downwash effects the distance between
wing and tail is more significant, wi-,h correspondingly larger ef.Cective values
of K. In most dynamic stability calculations, K is found to be quite small in
connection with wing-tail downwash effects. Accordingly, with this single ex-
ception, it has been customary to neglect aerodynamic lag in the calculation
of the stability derivatives. When dealing with conventional aircraft this
proves to be an adequate approximation, but it may not be so for high speed air-
craft and for less conventional configurations such as flying wings, helicopters
or missiles. Nevertheless, K almost always will be suff~ciently small in dynamic
stability studies to justify neglecting terms of order Ka in the aerodynamic cal-
culation. In studying the dynamic transfer fuznction of the control surface,
servo-tab, etc., It may become necessary to consider higher order terms in re-
duced frequency.

2..3 Structural Damning. A third type of time lag in aeroelastic cal-
culations is associated with structural hysteresis, also known as "structural
damping". While the structural damping forces often are of decisive importance
in flatter calculations, they usually are negligible compared with the much
larger aerodynamic dam:ing forces that are absociated wi h the rigid body
motions of the aircraft. Accordingly, structural damping will be neglected
throughout the following discussion.

2.2 Static Aeroelastic Effects

It has been pointed out in Section 2.1.1 that static aeroelastic effects
are characterized by certain aeroelastic parameters, such as the torsional
divergence speed. The more important of these now will be considered on the
basis of simplified models, after which the transition to actual configurations
may be made by reference to the literature.

2.2.1 Torsional Deflection and Divergence. Consider the two-dimensional
model of a wing shown in Figure 2-1. If the wing is rotated initially to an
angle of attack x a lift force L arises, generally forward (a distance ec,
where c is the chord) of the elastic axis.
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II

Figure 2-1. A Two Dimensional Wing Having a Torsional Stiffness

The resulting moment produces a twist q and the total angle of attack is
given by

C~z (0 t(2-2)

The system will be in static equilibrium when the total aerodynamic moment
(Mq) is just balanced by the torsional moment (K ) produced by the twist

p; -thus,

K r1 o htc~ (2-3)

Where Ma and K are, respectively, the pitching moment due to angle of attack

and aeroelastic torsional moduli (per radian). Solving (2-2) and (2-3) for p

and a yields

WA:C (2-4a)
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In terms of the dynamic pressure q , the wing area S , the lift curve slope

a dCL /d and the moment arm Cc MoI is given by

As for Kq, if the wing were a uniform, cantilever beam of length b/2 * and of

uniform torsional modulus GJ, the ratio of applied (tip) moment to tip de-
flection (in radians) would be given by (section 4.1.4.2):

(2-6)

The quotient M / then would be

(A LK)- bvccSa./2GJ 52 ?-(SrJ (2-7)

where bc has been replaced by S.

It is evidentl that T becomes infinite (wing divergence) when M. = K

or, equivalently, when q attains that critical value, say q at which

the right hand side of (2-7) becomes equal to one. Moreover, it is evident
from dimensional considerations that the departure of a real wing from the above
simplified model may be taken into account by the introduction of a suitable
constant, which may be determined either by a more refined analysis or by semi-

empirical means. Accordingly, the divergence value of the dynamic pressure
may be placed in the form

(2-8)

where GJ is the section modulus at some reference station (usually the wing
root), and e is an appropriately averaged value of the "eccentricity", i.e.,
the average distance of the line of aerodynamic centers forward of the
elastic axis, divided by the average wing chord.

In terms of the parameter qd the ratio of total angle of attack a to

* b/2 is the half-span of the wing
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that which would exist for an infinitely stiff wing, viz., aO , as given by

(2-4b), becomes (noting that q is proportional to the square of the flight
speed*)

Id
CTO (2-9)

The comparison with the amplification factor of a single degree of freedom
oscillator is immediately evident, the divergence speed (Ud) being analo-
gous to the resonant frequency. The effective amplification of a predicted
by (2-9) is equivalent to an amplification of the lift curve slope with respect
to the root section incidence a0 . This may represent an adverse effect in

respect to gust loading and also may promote tip stall.

A fairly extensive analysisI of straight, tapered wings, based on a
variational method and including aerodynamic induction effects, reveals that
an adequate approximation to qd (within 3 percent of the exact value for

ratios of tip chord to root chord less than 0.65) for wings of uniform struc-
ture (so that (G-J) varies as the fourth power of the wing chord) is provided
by substituting the three-dimensional lift curve slope CL  for a in (2-8)

L

qd ~4(GJKO~icieCS'-(2-10)

The result (2-9) is less readily generalized, but, as it
stands, givvs a rough approximation to the ratio of effective (i.e., averaged
over elastic wing) to root section values of the angles of attack. In addi-
tion, the right hand side of (2-9) is representative of the increase of the roll
damping coefficient (C1 ) for an elastic wing relative to the corresponding

p
rigid wing value. In dealing with antisymmetric loading, however, the lift curve
slope (a) should be calculated for half the wing, i.e., half the true aspect ratio
should be used in correcting for induction effects.

2.2.2 Control Surface Effectiveness and Reversal. A second basic aero-
elastic phenomenon is the reduction of control surface effectiveness due to
twist of the wing (or tail). Consider the model of Figure 2-1 modified by the
addition of an aileron (or elevator), as shown in Figure 2-2. An initial
rotation of the aileron (5 , positive down) will produce two types of

* It should be noted that qd is not entirely independent of flight speed in

consequence of the dependence of the lift curve slope a and eccentricity e
on Mach number and, less importantly, the variation of load distribution, and
therefore A, with speed.
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elastic deflection. First, the lift associated with this initial deflection,
acting aft of the elastic axis (Figure 2-2a) for normal configurations,
produces a nose down twist (-() of the wing, resulting in an adverse incre-
ment of lift due to decrease of angle of attack. Secondly, the aileron hinge
moment (Mh) will tend to restore the aileron to its neutral position, there-

by reducing its effectiveness. However, if the aileron were to be aerodynami-
cally over-balanced (Figure 2-2b), the opposite effect would be experienced,
and "aileron divergence" could occur, (the aileron hinge moment still being
negative).

-M

Ko

Figure 2-2a. Lift Due to Control Surface Deflection.

Figure 2-2b. Moment Due to Control Surface Deflection.
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In modern aircraft having irreversible, direct actuators the hinge
moment effect may be neglected, and only the loss of effectiveness due to
wing twist need be considered. In addition, it should be remarked that
bending of a swept wing also contributes to reduction of control surface
effectiveness in consequence of the reduction of effective angle of attack.

Let (p be the increment of wing twist due to the control surface de-
flection 8. Then the equation of elastic equilibrium, obtained by taking
moments -about the elastic axis and subtracting (M co ) is

064 + eCL (2-11)

where M and K are defined in the preceding section 2.2.1 and M and L b

are the control surface moment and lift moduli, referred to the
elastic axis. In terms of the control surface lift and moment coefficients
C * and C , M. and L8 are given by

N1  '3~(2-12a)

L 5  (2-12b)

It again should be emphasized that the total control surface moment about
the elastic axis usually is negative for practical ailerons, viz.,

N + c, (2-13a)

C M+ ec C', (2-13b)

although positive values of this combination may characterize exceptional
elevator configurations.

The control surface effectiveness factor, here defined as the ratio
of actual section lift to that which would exist in the absence of elastic
deflection, is given by

LCs 1

* The small '!f" in the sectional lift coefficient, is customarily

used and still implies a lift effect (CL is the "overall" lift coef-

ficient). This is not to be confused w th the rolling coefficient C
ip

•* The elevator contributions are computed for the same eccentricity
the angle of attack contributions.
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Solving (2-il) for q yields

+a (2-15)

and (2-14) becomes

c - I - /P +(.M& + ec L )(4. /- %) (2-16)

It is evident, since M, M and L all are proportional to the dynamic

pressure q, that there must exist not only the previously calculated
divergence speed at which the denominator of (2-16) vanishes, but also a
reversal speed at which the numerator vanishes. Moreover, due to (2-13)
this reversal speed usually must be less than the divergence speed. The
dynamic pressure for divergence remains as defined by Equation (2-7) and
(2-8),

= -- (2-17)

KO

while that for reversal is defined by

Ul -(I15+CLs)(hjf I  . (2-18)

so that (2-16) may be placed in the form

(2-19)(L _ _ I -C'0 /2s)(-

Substituting MC, K, N and L. in (2-18) from (2-5) and (2-6),

(2-12ab) above, solving for qr , and multiplying by a correction factor B

to account for three dimensional effects yields

air'& D(GJ/52Xc.,s/.acs) (2-20)
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Since the constant B depends on the ratio of control surface span to wing

span, as well as wing taper and aspect ratios, '-t is not possible to assign

it a universal value. An extensive numerical analysis is given in ref. 1,

and it is found convenient to re-express qr as follows:

Aq( 5 (2-21)

where c is the section (two-dimensional) lift curve slope, and the factor

A8 depends on stiffness distribution, taper ratio, aspect ratio, control sur-

face span to wing span ratio, and, most importantly, on the quantity:

( ~ ~ R it(m/c) (2-22)

The dependence of A5 on for a wing of 2:1 taper, aspect ratio 6, and

30 percent span ailerons is plotted in Figure (2-3). This curve also fur-
nishes a reasonable appr.oximation of other, practical values of taper, aspect
and span ratios (see ref. 1 for details). Using NACA test data2 , the para-
meter p8 is plotted vs. chord ratio and the product of eccentricity and

section lift curve slope in Figure (2-4).

Having qi and qr, the control surface effectiveness factor for a
three-dimensional wing (or tail) may be computed from (2-19). In this
connection it should be made clear that the three-dimensional lift curve slope

C is to be used in computing qd, from equation (2-10), whereas the two-
L a
dimensional value 1. is to be used in computing qr from (2-21) and (2-22).*

Moreover, as mentioned previously, in estimating rolling power, the value of
CL  used in ad should be calculated on the basis of one half of the aspect
a

ratio for the complete wing, whereas in elevator (or elevon) calculations the
full aspect ratio of the tail should be used.

Perhaps more important than the actual rolling moment produced by a given
aileron deflection is the resulting rate of roll. It is found (cf. section
2.2.1) that the roll damping coefflcient**of a straight wing is increased

approximately in the ratio

-(91% (2-23')

* This is an empirical conclusion based on the analysis of Ref. 1.
** C is to be distinguished from C2 and c which are sectional lift co-

p

efficients.
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The corresponding reduction factor for available rate of roll usiag (2-9),
then is given by

(1')22

Therefore the variation of rolling effectiveness with speed is parabolic, as
shown in Figure 2-5. It is evident that the reversal speed cannot be
approached too closely without accepting a severe loss in rolling effectiveness
(50 percent at U = 0.7 U).

The decisive factor in setting the allowable reversal speed for the
elevator is not the available rate of pitch, but either loss of static margin
or the possibility of tailplane failure in consequence of the very large
elastic deflections that may arise. Elastic deflections of the tail usually
are far more serious (in the structural sense) than those of the wing, due to
the larger elevator to horizontal tail (span and chord) ratios of typical
elevators and the relatively small torsional structure of the fixed tail-
plane (as contrasted with the wing).

2.2.3 Fuselage Bending. A third example of a basic aeroelastic effect
is fuselage bending. In many designs this may be the dominant factor in de-
termining the effectiveness of both the horizontal and vertical tail surfaces,
particularly the latter, since the lateral fuselage stiffness can be quite low.

Let Kf be a stiffness constant defined such that a load Lt applied to

the fuselage at the tailplane attachment produces a rotation

X (2-25)

aa shown in Figure 2-6 (note that 6f constitutes a negative incidence).
L

Then if L is the tail lift due to tail angle of attack and at the effective

angle of attack at the tail in the absence of fuselage deflection, the equation
of elastic equilibrium must be

The reduction in tail effectiveness due to fuselage bending is given by

e - Tt -a_(2-27)
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Figure 2-6. Tail Plane Rotation 9 Produced by Tail
Load L t
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Solving (2-26) for f and substituting in (2-27) yields

L 0

or, more conveniently

~Lt'~ 0  I(2-29)
where the parameter q represents that value of the dynamic pressure
at which fuselage bending causes a 50 percent reduction in tail effectiveness.
Comparing (2-29) to (2-28) and writing

L C.9-5 tCL t (2-30)

where St and CL  represent tail area and lift (coefficient) curve slope,
t t

qf is given by

Ke Lo(t (2-31)

It is not practical to give a simple formula for K due to the wide
variations that occur in fuselage design, but it may be noted that

Kj (2-32)

where E is Young's modulus for the fuselage structure, I its cross-section-
al moments of inertia, and 2f a representative fuselage Length; (e.g., dis-

tance from c.g. to tail, Rt) cherefore

q, LTE1 /~1. (2-33)
It should be remarked that fuselage bending of itself, tending only to

relieve the applied load, can have but little effect on either the divergence
or the reversal speeds for the tail. Moreover, torsional deflection of the
horizontal tail partially compensate for the reduction in horizontal stabi-
lizer effectiveness due to vertical fuselage bending. Likewise, torsional
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deflection of the vertical tail partially compensates for the reduction in
vertical stabilizer effectiveness due to sidewise fuselage bending. On the
other hand, elevator effectiveness is reduced both by horizontal tail plane
torsion and fuselage bending, with the latter effect often the more important.

2.2.4 Swept Wing Deflections. Consider the simplified model of a swept
wing shown in Figure 2-7, where x and y constitute a coordinate system oriented
by the direction of flight, and xv and y' a coordinate system obtained by
rotation of the x and y axes through the sweepback anglel/. If rotations about
these axes are treated as infinitesimals, they may be resolved as vectors accord-
ing to

Ol iC-05A+V SiflA (2-34+a)

-'co A (2-34b)

I¢. I

Figure 2-7. A Swept Wing of Constant Chord
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The actual bending deflection of the wing of course depends upon the lift
distribution, but for the present simplified study it suffices to consider the
single chordwise section shown as c' in Figure 2-7. The wing bending slope
at this section due to a lift I' per unit span can then be calculated by the
introduction of a stiffness coefficient 'b, defined such that

' CL (2-35)

where q is the dynamic pressure of the free stream, a' a lift curve (coeffi-
cient) slope appropriately corrected for sweepback, and a the effective angle
of attack measured as a rotation about the y axis. The elastic contributions
to the total angular rotation then are 0, = V and e, 0 (torsion

would give a ey, component), and the additional angle of attack due to bending

is given by the first term of (2-34b) as - * sin A . Thus, if a is the rigid

wing angle of attack, the effective angle of attack of the elastically deflect-
ed wing is given by

V -SI Y,(2-36)

Solving (2-35) and (2-36) for a yields

O(: z~.-(c i7 A/jO (2-37)S+

In applying the result (2-37) to a three-dimensional wing of span b
(measured from wing tip to wing tip, i.e., along the y axis), it may be deduced
from elementary beam theory that the influence coefficient Kb must be proportion-
al to the section bending modulus EI and inversely proportional to the cube of
the beam length 1/2 b sec A . Thus following the analyses of the preceding
sections, (2-37) may be recast in the form
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where

3g Kb/c soi n-A (2-39e.)

- /1 '3-'sn .(bsec A) 3  (2-39b)

CFE I/c-'5' secZ syZ (2-39c)

where C is an as yet undetermined constant that includes the effects of

distributed load, taper ratio, varying stiffness, etc.; S is the wing area

(proportional to bc' sec A = bc); and AR is the aspect ratio based on the
aerodynamic span b (as opposed to the "structural span" b sec A); viz.,

A/ b/S 2-40o)

If the structural or "panel aspect ratio" is introduced according to

,AR': (b secr/$ , se(A (2-4i)

(2-39c) becomes

A a 5 (2-42)

In calculating the parameter qb for an actual wing the section lift
curve slope a' may be replaced by the mean lift curve slope CL * and .&

taken as the average sweepback angle of the elastic axis. The constant C is

more difficult to calculate than its counterpart A in the torsional problem

of section 2.2.1. However, if a tapered wing is approximated by a cantilever

beam having a straight elastic axis and bending about a virtual root chord trans-

verse to this axis (see section 4.2.3.6 for a more detailed discussion of the

actual deformation of swept wings), and if th3 stiffness is assumed to vary as

the fourth power of the chord, and EI is taken as the root section (perpendi-

cular to the elastic axis) stiffness; and if aerodynamic strip theory is used

in calculating the aerodynamic forces (an approximate value for C is 45);
then (2-39c) becomes

* C. is based on c rather than c', and is the usual three dimensional lift

La
curve slope.
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In order to compare the effects of bending with those of torsion, it may
be noted that the contribution of a torsional rotation of a swept wing to
effective angle of attack is reduced by a factor of cos A (see eq. 2-34b)
Accordingly, if a swept wing were to deflect in pure torsion, the appro-
priale modification of (2-10) would yield (although the value of A = 64/9
would be less reliable)

ad =64(&J 0 C S'COSA. (2-44)

The relative importance of bending and torsion then may be inferred from
the ratio

'~ib 7 SihA~ )(2-45)

Noting that the stiffness ratio EI/GJ will be of the order of unity for
practical structures (somewhat large in the presence of cutouts, which
reduce GJ more than EI), it is clear that bending of even a moderately
svept wing will be much more important than torsion insofar as static
aeroelastic effects are concerned. Thus, for a sweepback angle of 45°O
aspect ratio 6, and eccentricity 0.15 (subsonic wing with line of aerody-
namic centers at 25 percent chord and elastic axis at 40 percent chord)
(2-4.5) yields % 9 qd/l3.

The predominance of swept back wing bending over torsion implies
that the elastic deflection will tend to reduce rather than increase the

effective angle of attack. Accordingly, wing divergence disappears
(approximately when qb - qd) as a practical problem, whereas aileron

effectiveness is even further reduced (but since the damping in roll also
would be reduced, the reduction in available rate of roll may not be
greatly different. Conversely, qb would be negative for sweepforward,

whence bending divergence wo-j1.d occur at q =-qb (see (2-38) above) for a
wing infinitely stiff in torsion and at an even lower q in the presence
of torsion. The very low divergence speeds that would result, together
with the large magnification of gust loading and tip stall problems,
virtually rule out the swept forward wing as a practical possibility.

Finally, it should be remarked that bending of a swept back wing, tending
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to relieve the outboard (wingtip) load, not only reduces the effective angle
of attack but also shifts the center of pressure forward. The resulting loss
of static margin, supplemented by an additional loss of margin due to
fuselage bending or, in the case of a flying wing, a loss of elevon effective-
ness, is probably the most serious of all aeroelastic effects and often must
be a dominant factor in designing the wing. Moreover, unless the wing can be
designed for some single cruise condition, the redistribution of wing load due
to elastic deflection and the much greater range of control surface deflection
required to provide for this redistribution may occasion important increases
in drag.

2.2.5 Static Aeroelastic Correction of Stability Derivatives. The
results of the preceding sections, particularly the expressions for q d, qr

q and q given by equations (2-10), (2-21), (2-31) or (2-33), and
( -43), respectively, render possible a quick appraisal of the over-all importance
of aeroelastic effects for conventional aircraft. If the maximum dynamic
pressure at which a particular aircraft is intended to operate is found to
be comparable in magnitude (say 25 percent or more) with these parameters
it then will be necessary to carry out more detailed calculations of the
various aerodynamic coefficients for the elastic wing. Extensive charts for
the calculation of the static derivatives for straight wings and, assuming that
frequency comparisons so permit (cf., section 2.1.2), also the dynamic stability
derivatives have been developed in Ref. 1, using lifting line theory.
Corresponding charts for swept win s also have been prepared on the basis of an
approximate alerkin type analysis uging simple beam theory and aerodynamic
strip theory . Diederich a.i Foss o also have contributed graphical data for
conventional aircraft which is based upon the assumption of an elastic axis
representation for the elastic wing.

The general principles are also discussed in greater detail in
references 7 and 8. In addition, references 7 and 8 give a detailed list
of references that are itemized according to the subject matter.
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2.3 Lift Distribution on an Elastic Wing

The basic problem in static aeroelasticity is the determination of the
lift distribution on a swept or unswept elastic wing. Specified for the problem
are the wing geometry, structural properties (most conveniently expressed as
influence functions), and the rigid-body geometric angle-of-attack distribution
which is determined by the attitude of the airplane, the built-in twist, control
surfaces deflection, or steady-state motion of the airplane. The wing of course
deflects under the aerodynamic load. The final aerodynamic load distribution is
to be calculated. From the solution of this basic problem all static aeroelastic
characteristics of the wing can be determined, such as the divergence speed, wing
deflection and stresses, control surfaces effectiveness, and static aeroelastic
correction of the stability derivatives.

It is necessary to be able to determine the spanwise lift distribution for
a wing whose elastic deflection were known. The simplest procedure is to use
the "strip" assumption, under which the local lift coefficient is proportional
to the local angle of attack. The overall effects of aspect ratio, sweep angle,
and Mach number are accounted for by an appropriate correction of the lift curve
slope. In Section 2.3.1 the lift curve slope corrections are summarized. When
a more accurate analysis is desired, a simple empirical method developed by
Diederich may be used; this method is described in Section 2.3.2. In Section
2.3.3 the aerodynamic influence coefficients concept is discussed. Finally, in
Section 2.3.4, the formulation of the elastic wing problem is discussed and the
method of solution is indicated.

The reader is referred to Chapter 5 of Ref. 8 (Bisplinghoff, Aeroelasticity),
for detailed presentation of the theory of lift distribution over finite wings
and for references to original papers. For charts and tables of calculated
spanwise lift distribution covering a wide range of sweep angle, taper ratio,
and aspect ratio, see Diederich and Zlotnik, Refs. 9 and 10 Groth, Ref. 18,
gives useful graDalical data for swept wings.

2.3.1 The Lift Curve Slope

To avoid complicated aeroelastic analyses, the "strip theory" is usually
employed. In this theory each chordwise section is supposed to act as if it
were in a two-dimensional flow without aerodynamic induction effect, the
finite span effect is then partially accounted for by an overall correction of
the lift curve slope. This approximation, without aerodynamic induction effect,
is a crude one; but is sufficient for certain purposes.

The lift curve slope per radian for a thin airfoil in a two-dimensional
incompressible flow will be denoted by a( theoretical value, 21; experimental,
21j ,I generally of order 0.9). The effect of the compressibility of the
fluid is expressed in terms of the free-stream Mach number, M.
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If ' 4 I, Glauert gives

o (2-dimensional') (2-46)

where a' is the value of C ,/a for a compressible fluid, and is that
0

for M - 0. The effect of finite span is approximately given by the following
formulas:

a! -
(unswept, subsonic,

rr -7 m a. symmetric loading, (2-47)
v" 7r moderate ,g )

where a' is the lift-curve slope of a wing of finite aspect ratio in a compres-
sible flov, is the Glauert's correction factor for non elliptic planform.

(Fig. 2-8).

For very small ,

01= (unswept, subsonic,

// __4 a, (1+) symmetric loading, (2-48)

I wt(2small A )

The effect of sweep is incorporated in the following formulas:

(incompressible,
(a.) a,, COSA infinite span,,

swept wing) (2-49)

where a0 is the lift-curve slope of the airfoil section normal to the leading
edge.

(a') 4_0CosA(a) = A (subsonic, infinite

F1 - A ' az. span) (2-50)

= ( (finite a, $ ra"A,

j . ,, . _____+__ symmetric (2-51)
T 7rloading)
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2
where A is the aspect ratio b IS, (b = the wing span from tip to tip,
S = wing area). If the wing is tapered, the sweep angle A should be
measured along the 1/4-chord line.

For antisymmetric spanwise lift distribution, the lift curve slope is
obtained by replacing Ak in the above formulas by the effective aspect ratio:

(antisymmetric loading) (2-52)

2

In the general case the spanwise angle of attack az(y) should be separated
into two parts, one symmetric in y and the other antisymmetric in y, (y = 0
on the airplane centerline) =

then one may write

(2-54)

where a and i are corrected respectively for A and ,e"

The above formulas are not valid when ax is so large as to cause stalling,
or when M)MCr , where Mcr is the "Mach number of divergence", which is defined

as the point of inflection of the curve of C vs M. In the transonic range,
L

M )M, experimental data should be used as the variation between individual

wings becomes difficult to generalize.

In the supersonic flow, M> 1, if the free-stream Mach number is suffic-
iently high, the linearized theory again gives a good approximation. .Then
the two-dimensional-flow lift curve slope is

4
MZ - 2-dim., supersonic) (2-55)

and 4 osA

- .- (supersonic leading
edge, M cosA;*l) (2-56)

For wings of small aspect ratio, and delta wings, simple strip theory generally

does not apply.
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2.3.2 Spanwise Lift Distribution at Subsonic Speeds

A simple approximate method for calculating spanwise lift distribution
at subsonic speeds, developed by Diederich, (Ref. 11) will be given below.
This method is more complicated than the strip theory, but is much simpler
than Weissinger's lifting-line theory or Falkner's lifting-surface theory.
Its justification is entirely empirical. Numerical examples can be found in
the original paper.

Symmetric Lift Distributions

Let the lift distribution be expressed in terms of the loading coeffi-

cient 7:

c e - (2-57)

C

Since, at small angle of attack, 7 is a linear function of U , one may write

(2-58)

where a = average angle of attack, radians, measured in streamwise
direction

a = "additional" lIft distribution coefficient

= "basic" lift distribution coefficient

The integral of ya across the span is 1, and that of 7b is zero.

The lift-curve slope )C/ is given by formulas of the previous

Section. To account for the effect of airfoil thickness empirically, a fur-
ther refinement is made. This refinement consists of replacing the Glauert

correction factor - - , by empirical curves which are functions

of airfoil thickness ratios (perpendicular to the /4 -chord line). The final
expression may be written:

k,. a. cos A (2-59)
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where

k is given in Fig. 2-9, as a function of F-defined below.o

(ato/ao) is given in Fig. 2-10.

a = lift-curve slope in two-dimensional incQmpressible flow,
o( AZ , = o) of airfoil section perpendicular to 1/4- 4

chord line.

A = angle of sweepback at 1/4-chord line.

The "planform parameter", F, from which k0 is determined, is

FaA 
(2-60)

a,

For very large angles of sweepback (J > 60)another factor k'e  , also
e

shown in Fig. 2-9, should be used instead of k .

The additional lift distribution 7 may be estimated as follows:
a

C

Y, (L ~*Z ,L (2-61)

where c chord, measured parallel to plane of symmetry.

c average chord, $/

y*= lateral coordinate/semispan.

f = empirical sweep-correction function, Fig. 2-11.

C1 , C2 , C3  functions of F , Eq. (2-60) given in Fig. 2-12.

The function f depends on the "effective" angle of sweep A defined by

eAe ____"______ (2-62)
~ I / -M

The elliptic distribution i - y is also shown in Fig. 2-11 as the

value of the function f forA = 0

The basic lift distribution 7b is given by

WD "- a W (2-63)
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where k1 is given in Fig. 2-9 whereas 6CL/ and ya are given above in

Eqs (2-59) and (2-61). The angle-of-attack U is measured in streamwise direc-
tion. The average angle of attack is

CK (2-64)

If there are discontinuities in the angle-of-attack distribution, they should
be faired before a is used in Eqs. (2-63) and (2-64). Apparently the best
results are obtained, on the average, when the fairing extends about 0.3 semispan
on either side of the discontinuity and passes through the midpoint of the dis-
continuity; the faired curve should have the same area as the unfaired one.

Center of Pressure

The lateral coordinate of the center of pressure y1 of the additional
lift distribution, or of any lift distribution for a constant angle of attack
across the span, is numerically equal to the moment about the origin of the
function 7a I since the area under 7a is 1. Therefore

/ 12- Ld ' 7(2-65)

where - is the abscissa of the centroid of area of the function f , and is
given in Fig. 2-13. For linearly tapered wing, with taper ratio N

= tip chord/root chord,

the integral in the first term is reduced to

f d *' _____

3 (2-66)0 3

Antisymmetric Lift Distribution

The lift distribution for any antisyunetric twist may be resolved into
two parts: a rolling-type distribution, which is the distribution for the given
wing with a linear antisymmetric twist of sufficient. magnitude to have the
same rolling moment as the twist distribution of interest, and a residual

distribution, which is the difference between the rolling-type and the true
distribution and which, by definition, has no rolling moment. Hence the
antisymmetric lift distribution may be written
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Figure 2-13. Centroid of Area and Moment of Inertia of Lift-Distribution
Function f(from NACA TN 2751).
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where

C~c rolling-moment coefficient for linear antisymmetric twist
I with unit angle at the tip

C , rolling-moment coeff. due to rolling.
Id Ip

a = tip angle required for a linear antisymmetric distribution
with the same rolling moment as the distribution of interest.

7d = unit-rolling type distribution.

Yr =residual distribution.

These coefficients are estimated as follows:

C~ . a (." 2 /.t

where a a/ao, CI, C2 , C3, are given above,k 4 is a function

of the plan-form parameter and is given in Fig. 2-9, and

k 4 y dy (2-69)

is given in Fig. 2-13. If the wing does not have a linear taper the expression

(C y* z (-3A
4 C Y*_Y* must be substituted for the term 3

Y Y_ (2-70)

ey k3 (d ( (2-71)

I

06 c ~ y. 2 (2-72)

The factors k2, k are functions of F , given in Fig. 2-9. The corrections
ko ,k , ... k4 are all derived for theoretical finite aspect ratio corrections

and modified on the basis of lift-curve sl.ope formulas of Section 2.3.1.

Any discontinuity in the angle-of-attack distribution must be faired be-

fore the distribution is used in Eqs. (2-71), (2-72). A convenient procedure is
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to plot the ratio a/y* over the span and to fair it as suggested for discon-
tinuous symmetric distributions.

The empirical information embodied in the curves presented above was
derived for plan forms with nearly straight quarter-chord lines and for ef-
fective angles of sweepback which are not greater than, say, 600. However,
for very small aspect ratio, the agreement between the above empirical
method and the slender wing theory seems quite good.

If experimental values of Ct/U, C , 7 and C are known,Yd

they may, of course, be used instead of the values given herein. For wings
with fuselage, nacelles, etc., an effective value of the planform parameter
F can be obtained from Fig. 2-9 if the lift-curve slope is known from ex-
periment. The factors kl, k2, k3, k4 can be obtained for this effective F.

2.3.3 Aerodynamic Influence Coefficients at Subsonic Speeds

In practical aeroelastic analysis the angle of attack and the lift digtribu-
tions are specified or computed for a number of stations across the span; and
the structural ( or elastic) properties of the wing are specified by matrices
of influence coefficients. Hence it is natural to employ matrix representa-
tion. Let the lift distribution coefficient y,

c

the additional lift distribution y, and angle-of-attack a be all taken at

the same set of stations, say points 1, 2, ... i , and write [y} the col-
umn matrix which consists of the values of y at these points, etc.; the
equations of the last section, 2.3.2, can be collected together and posed
in the matrix form:

(a) Symmtric case (2-73)

(b) Antisymetric case I )'j

(2-74)

where (Q] , are square matrices of the aerodynamic influence coeffi-
cients in the symetric and antisymnetric cases, respectively.

To derive the aerodynamic influence coefficients, certain integration
must be replaced by a matrix operation. In the symmetric case, combination
of Eqs. (2-58) and (2-63) of Section 2.3.2 yields
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L (2-75)

we (2-76)

Diederich (Ref. ii) shows that by a proper modification of the Simpson's
rule of numerical integration, one may write

01.root +~ (Jvo.73-3c ( + 4F+

+ rJ L y.7(2-77)b

where
b = wing span

w = width of fuselage

fC3- a column matrix aa, a2, "'' . n,

7- a diagonal matrix the nonzero elements of which are the values of
ya at the stations 1, 2 ..... n, as given by Eq. (2-61) of Section

2.3.2.

L IIj = an integrating matrix.

If the interval from the wing root to the wing tip, (b-w)/2, is divided into
6 equal segments, so that the stations are located at

o, 0.1667, 0.3333, 0.5000, 0.6667, 0.83333, 1 (2-78)

where 7" is the ratio of the lateral distance of the given station fram the
wing root to the length (b-w)/2; then

[0.05556, 0.20833, 0.15278, 0.16667, 0.14913, 0.22500, O t (2-79)
11 1 J= rcoe - -tap (-9

root

When the row matrix b LI] [ I Ja is calculated, and the factor

w ((7a) ° + 4 (ya) + .) ) is added to its first element, the result

Nb b

may be written as L lj L A square matrix [i1 t ya] can
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then be constructed which consists of rows all equal to LiJ L7aI . ith
this square matrix, Eqs. (2-77) and (2-75) may be combined into

L Yo 7 A 1 IiL IL47 1- k L 17j[ J1 (2-80)

where L 1 is the unit matrix. This is then of the form of Eq. (2-73). Hence
the symmetric aerodynamic-influence-coefficient matrix is

[ . -L .7 c,-k,)[ ,] r. , L 7](2-81)

Unless tip tanks or end plates are present, 7a and 7 vanish at the wing tip.

Hence the last station in (2-78) and the last element, 0, in (2-79), may be
dropped.

A similar reduction of the antisymmetric case leads to (Ref. 11).

it] L Yd 7 ( 1 -k3. I ,L 7 + 7 2-02 )

b - w
The matrix I 7a is a square matrix with rows all equal to b LIIJ Lal

and with a constant H' added to the first element:

H' ~ ( z( )~~ I. ~(2-83)

YY

The matrix can be calculated at the giver. stations from the relation
y

_(2-84 )

An alternative procedure is to use Multhopp's integration formula, which
states that for a function F(I ) which behaves like the spanwise lift distri-
bution at the wing tip,

- F , (2-85~)
C T 5-73 m38
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where .O - mi
Z ... ° - -( 2 -8 6 )

and t FFwF( M) (tm,, , .,* (2-87)

'odd/

Hence if, instead of J* of Eq. (2-78), the stations were chosen according to
Eq. (2-86), with m = I near the wing tip, and m = (n +1)/2 at the wing root,
then L

t ,J L t, ,.I(-8

2.3.4 The Effect of Elastic Deformation on the Lift Distribution

The methods of the preceding sections yield the lift distribution for
swept wings for a given angle-of-attack distribution. If the wing is elastic,
it is necessary to resolve the angle-of-attack into two parts, one part due to
the rigid-body motion of the airplane, as if it were perfectly rigid, and
another part due to the elastic deformation. The elastic deformation is
caused in turn by the aerodynamic load. Thus the nature of the lift distri-
bution problem of an elastic wing is that of a feedback system.

For problems concerned with the stability and control of aircraft it
generally suffices to use the method of successive approximation. On the
premise that the flight speed is substantially lower than the critical speed
of wing divergence or that of aileron reversal, the effect of elastic deforma-
tion is not too large. In this case one computes first the lift distribution
for a rigid airplane. Then The elastic deformation for this lift distribution
is computed. Next the change of the lift distribution due to the elastic
deformation is computed, and the process is repeated until convergence is
reached.

In the general case, it may be necessary to treat the lifting surface as
a plate-like structure. For the following illustration, however, it will be
assumed that reasonable accuracy can be obtained by considering the deforma-
tion pattern at each chordwise section as charactelized by a deflection at
a reference point and a rotation in the chordwise section about that point.
Generalization to the plate-like structure is quite evident, and detailed for-
mulation can be found in Ref. 8.

For a wing other than a normal simple beam, the concept of elastic axis
loses its simplicity, and it is more straightforward to define the wing
deformation with respect to a suitable reference line. Let the wing under
consideration be shown in Fig. 2-14 whose cross sections normal to a reference
line may be assumed rigid. Let s be the distance measured from an origin
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Figure 2-14. Swept Wing
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along the reference line. Let w(s) be the deflection at a point s on the ref-
erence line, normal to the plane of the wing, and let O(s) be the angle of
twist of a normal cross section at s about the reference line. In. the aero-
dynamic load problem, the slope r (s) = )w/)s, rather than w itself, is of
importance. The elastic property of the wing can be characterized by the
following influence functions:

F1 (s,a-) giving P at s due to a unit force at a-

F2 (So-) giving e at s due to a unit force at

H1 (s, o-) giving rat s due to unit external twisting moment atc-

H2 (s, o-) giving O at s due to unit external twisting moment at 0-

By an external twisting moment is meant a couple whose vector is tangent to
the reference line. If there acts a unit couple whose vector is perpendicular
to the reference line, this couple will be referred to as a unit external bending
moment. The influence functions for and 0 due to unit external bending

moment are and 2 FA respectively.

These influence functions are defined by assuming the structure being
rigidly supported in a manner appropriate to the particular problem under
consideration. The positive senses of force and deflection, and couples and
rotation, must agree respectively.

By the principle of superposition,

F I¢) -) L-! r) t ao-Jdo-
(2-89)

0 0 e

o f, (r) d v- I 2 (j-, do- + Hzs, v)c o -
J J f (2-90)

where f(s)=normal external load per unit length acting on the reference
line,

m(s)--distrituted external bending moment, per unit length, about the
reference line,

t(s)=the distributed external twisting moment per unit length about
the reference line.
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The integration covers the entire length of the wing.

Now the angle of attack at any section s, measured in the flight direction
and denoted by a(s), can be expressed as

+ 96C)(2-91)

where

a(r) = value of a if the airplane were perfectly rigid,
(e)

a = that due to elastic deformation.

Expressed in terms of r and e defined with respect to the reference line,

= @os A - / s A (2-92)

where _ is the local sweep-back angle.

From a(s), the aerodynamic forces can be determined. The local lift
and moment coefficients are defined by considering the lift and moment acting
on an elementary strip of small width dy parallel to the x-axis (see Fig.2-1).
The length of the strip is the chord length c measured in the free-stream
direction. The lift force on the strip is ;C cdii and the moment about
the aerodynamic center of this strip is eC czdy. Assume that the drag
force is negligible and that the force normal to the wing is equal to the
lift. Let the distance from the aerodynamic center and the reference line be
ec also measured in the free-stream direction, and taken as positive if the
reference line lies behind the aerodynamic center. Then the moment about a
point on the reference line due to forces on the elementary strip is
q Ci ec2 d y + q Cm c2 dy, with its vector parallel to the y-axis.

Resolving along and normal to the reference line, and replacing dy by
cosAda, one obtains

UrC~ (>~~y(r 4 c(., C*VA (r) (2-93)

inYK -- e Cm C cx() I 1" - (r) C99A~. (2-94~)

and
fcc) =r) r-) c*S A r)2-5

The integral equations for r(s) and e(s) pre then obtained by substituting

(2-93), (2-94), (2-95), into (2-89) and (2-90).

In practice, these integral equations are reduced into matrix equations.
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Let a(s), C1 (s), c Ce (s) be represented by column matrices a., C,

and cCI  with elements aei1 a2, .". an; Cj1 i C12 ..' C'n ; and cI C 1 ,

c2.C 2"c C n, specified at s = s, s2' ". s, respectively. For
if

conciseness in notation all matrices will be written underscored, without
particular distinction for column, row, or square matrices. The relation
between a and may be written as

c6~ ~A~e(2-96)

where A is a matrix of aerodynamic influence coefficients. If strip theory
is used, A is equal to a diagonal matrix whose nonzero elements are the
values of the local chord length cl, c2, ..., Cn times the lift curve slope

)Ct / a (corrected for aspect ratio). If the flow is subsonic, more refined
methods as presented in Section 2.3.3 may be used, and A = (SCL/() Qor

A= C1 Q for the symmetric and antisymmetric cases respectively.

Combining the above equations after they are all converted into matrix
approximation form, one obtains

C( f 0o(rJ M C(eiJ

~~j V- ( .csA ~-s' r

where

W T -

I. k -~fJric~5A~ *(Qos /4- s'~A 'i~o~A 2-98)
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In these equations e, sin A , cosA are diagonal matrices whose nonzero
elements are, respectively, values of e, sin.A , and cos-A evaluated at
the stations (sl1 s2, , Sn). Fl, F2 , etc. are the elastic influence

coefficients matrices. S is a diagonal matrix of "weights" used in con-
verting an integral into a finite sum. For example, if the points (Sl'...sn) "I

were taken at uniform spacing, then:-

Trapezoid rule: Simpson's rule; (n cdd)

00

00I

(\ / 0 q4

where -( )/ =7 (diagonal eleme:ats inS)

provided that b and a are the upper and lower limits of integration.
Eq. (2-97) can be written as

(~ C- 1  T cC', Af/ t 6 C, ] (2-100)

Hence

__e (_ - _'. £ _= + & C C ] (2-101)

The lift per unit span q c C1 can therefore be obtained by matrix operations.

The value of q that satisfies the determinant equation

l.5*.- 7 ~ f~o(2-102)

which is the dynamic pressure at divergence.

Solution by Matrix Iteration

Instbad of Eq. (2-101) which involves an inversion of a matrix, approximate
solution may be obtained by iterated matrices as follows. Let

+ = ,(2-103)
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From O_, compute successively the iterated matrices

E= - 3, (2-io4)

Then the solution (2-101) may be approximated by

c__ :_4°+ ' " " -"* I i - (2-105)
2Loy

This series holds for the dynamic pressure q < lqdi I Theoretically,

m should be so large that u has converged to a unique limiting vector
m

with negligible error. In practice it often suffices to take m = 2 or 3.

If qdiv is the smallest (in absolute value), simple; real eigenvalue

of Eq. (2-102), the divergence dynamic pressure is given by

"U i
xv (2-i06)

and, aside from a numerical factor,

S---(2-107)

where u is an eigenvector of the equation

(2-108)

In Eq. (2-106), the ratio U _1/ u means the ratio of the corresponding elements
rn- m

in the column matrices U 1  and u
m
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Note that qliv may be negative for sveptback wings. Then the wing

does not diverge, and Eq. (2-105) is valid only for those values of q which
is less than the absolute value of q iv"

Other methods of solution are available. See Ref. 7, Chapter 8. An
alternative formulation and method of solution, based on information of El
and GJ of a slender wing, is given by Diederich, Ref. 12.
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4 7l

NOM NCLATURE

a = lift curve slope

a' = lift curve (coefficient) slope corrected for sweepback

b = wing span, feet

C W wing chord, feet

C M sectional lift coefficient due to a

c a sectional lift coefficient due to b

e = eccentricity, the non-dimensional distance of the aerodynamic
center forward of the elastic axis.

= characteristic fuselage length, feet

)t = fuselage length from c.g. to tail, feet

' = lift per unit span = c'a'qa

p = rate of roll

q a dynamic pressure 1/2 2

cl. , dynamic pressure at wing bending divergence

qd = dynamic pressure at divergence (in twist)

qf = dynamic pressure at which fuselage bending causes 50 percent
reduction in tail effectiveness

qr = dynamic pressure at reversal (in twist)

w = width of fuselage

y = coordinates oriented by the direction of flight (cf. fig. 2-7)

W coordinates obtained by rotating x and y through sweepback angle

y' (cf. fig. 2-7)

A = = a correction factor used in determining the divergence speed

for a group of wings

A = matrix of aerodynamic influence coefficients

AR = aspect ratio --
S

B = correction factor for three dimensional effects
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C a lift coefficient - L
LS dCL

CLa - three dimensional lift curve slope --

dC
C roll damping coefficient C

2pd

C - control surface lift coefficient

C - control surface moment coefficient

CL lift coefficient of tail
Lat

E - Young' s modulus of fus, Lage material, pounds per sq. ft.

F . planform parameter

F 1 )

F2, = matrices of elastic influence coefficients

etc.

I - cross sectional moment of inertia of fuselage, ft.
F2GJ - uniform torsional modulus, ft. lbs.

K - "reduced frequency" = UL
U

Kb  - stiffness coefficient of wing in bending

K (P stiffness coefficient of wing in torsion

Kf - stiffness coefficient of fuselage in bending

L - lift force

La - lift due to angle of attack

L - lift due to control surface deflection

Lat a tail lift due to tail angle of attack

Lt a tail load

M a Mach number
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M ana pitching moment due to angle of attack (M is generally a pitching
moment, N a yawing moment, etc.)

a control surface hinge moment - (Mh) + (Mh)a + (M)6 +

M -a moment due to control surface deflection

S a wing area

S = diagonal matrix

S t  a tail area

U a flight velocity

Ud a divergence speed

a - total angle of attack

a t  M tail angle of attack in absence of fuselage deflection

=0 angle of attack due to initial rotation of wing

Fb W control surface parameter a 1 +

y loading coefficient

X a taper ratio

5 = control surface deflection angle

e f n tail plane rotation

eX rotations about x and y axes (cf. fig. 2-7)

y

ex' a rotations about x' and y' axes (cf. fig. 2-7)

A a sweepback angle of elastic axis

a wing twist
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= wing bending slope along elastic axis

= angular frequency

:5
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CHAPTER III

DERIVATION OF EQUATIONS OF MOTION

3.0 Introduction

The first step in deriving the dynamic stability equations for an elastic
airplane is the establishment of a coordinate description of the distorted
airframe (see the appendix at the end of this chapter for a discussion of
axes systems). It is convenient to retain the rigid airplane coordinates as
part of this description, at least insofar as the primary motivation of the
analysis is to describe the motion of the airplane as a whole (in contrast to
flutter analysis, where the primary motivation is to describe the elastic
distortion). Moreover, it is convenient to separate the distortion relative
to tht (hypothetical) rigid airframe into equilibrium, or steady flight
components and additional components associated with the dynamic perturbations
(I, N, w, p, q, r. rp, e, *) about this equilibrium. The steady flight dis-
torsions will enter the dynamic stability equations through the specification
of the equilibrium values of not only C-, CL, and Cm but also the angle of

attack and dihedral distributions of the wing and the downwash at the tail.

The foregoing separation of equilibrium and dynamic distortion is not
intended to preclude "quasi-static" aeroelastic corrections* to some or all
of the dynamic stability derivatives; indeed, such corrections should be made
at all points in the analysis where elastic distortion is not taken into account
by specific degrees of freedom, unless, of course, such distortion is known to
be negligible. It usually will be entirely adequate to apply quasi-static corr-
ections to all derivatives with respect to u, which changes rather slowly, and
to handle wing and tail torsional deflections in this manner in virtue of the
relatively high frequencies of the torsional modes. It should be remarked,
however, that the coupling between torsion and bending of swept wing may ren-
der it difficult to apply quasi-static torsional corrections directly, i.e.,
without including torsion in the equations of motion; on the other hand, tor-
sional effects on the aerodynamic characteristics of a heavily swept wing
usually are negligible compared with the bending effects. Quasi-static
corrections are discussed in section 3.2.2.3and in Chapter V.

*A "quasi.static" aeroelastic correction is one in which the effect of
distributed inertia forces on elastic distortion is neglected, so that this
distortion depends only on the instantaneous values of the dynamic stabilitj
variables (u, v, w, p, q, r, T, 0, *); thus, elastic distortion does not
lead to additional degrees of freedom in this approximation.
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The precise description of a complete elastic airframe or even a wing
alone would lead to either partial differential and/or integral equations,
and even the invocation of such simplifying approximations as aerodynamic
strip theory and simple beam theory still would leave an ordinary differential
equation. There are very few cases in which an exact solution to these
equations could be formulated, but even if an exact solution were possible, it
usually would not be warranted by the accuracy of available data. According-
ly, it is common practice to reduce to a finite number the coordinates describ-
ing the elastic airplane, either by assuming a finite set of deflection modes
or by dealing with the deflections of a finite set of collocation points on
the airframe.

The number of degrees of freedom in these approximate treatments is
equal to the number of rigid body modes plus the number of elastic modes
or collocation points. The accuracy obtainable for a fixed number of degrees
of freedom generally is better when the modal description is used, especially
if the mode shapes are judiciously chosen. On the other hand, the collocation
point method not only eliminates much of the judgment (based on experience)
required in the selection of mode shapes but also leads to a simple and
direct matrix formulation that is readily mechanized for digital computing
machines; in addition, the experimental (and, in the presence of high order
redundancies, the analytical) determination of the purely structural pro-
perties of the airframe is greatly simplified by this approach. Moreover,
having the general matrix formulation of the equations of motion for an
arbitrary set of points, Galerkin's method may be used to obtain a modal
formulation identical with that which might otherwise have been deduced
from Lagrange's equations through the expansions of the energies in modal
amplitude coordinates.

The matrix formulation of the equations of motion should not be assumed
to preclude the use of analog computers for the solution thereof. Indeed,
while it may be expedient to carry out the entire solution on a digital com-
puter, it frequently may be more advantageous to carry out the algebraic
manipulation of the matrices on a digital machine but solve the final dif-
ferential equations on an analog computer, particularly if the various
dimensionless parameters are to be varied during the course of the solution.
These questions will be discussed further in Chapter VIII.

The choice between the modal and collocation methods must rest, in large
measure, on the judgment and experience of the analyst and on the personnel
and facilities available to him. In general, the modal method necessarily
would be used where computations must be carried out by hand or desk-type
machines; the collocation method usually would be the choice for computations
to be carried out on high-speed, digital computers of sufficient capacity,
but machine capacity often might be sufficiently limited to render the modal
approach superior.
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COMPARISON OF TWO AEROELASTIC AIAALYSIS MEHODS

MODAL APPROACH COLLOCATION APPROACH

ADVANTAGES DISADVANTAGES ADVANTAGES DISADVANTAGES

1. Fewer equations 1. Success depends 1. Fewer assump- 1. Higher cost and
for the most tions are made. longer time to2. Lower cost
part upon the 2. Doesn't specify perform.

3. Easily solved right choice of a particular 2. Not as easily
by either modes and mode mode. solved on analogdigital or shapes. equipment.
analog computing 2. More assumptions 3. Readily mechan-
equipment. are made. ized for 3. User must be
e. Elastic and digital comput- familiar with

aerodynamic data 3. Answers are ing equipment. matrix operation

aerodynroicmdata
is usually approximate. 4. Ansvers provide
available or more informa-
readily computed tion about

elastic distor-
tion.

5. Approaches the
more exact way
to analyze an
elastic air-
frame.
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3.1 Modal Approach *

A simple form for the equations of motion of an elastic structure is the
form based on normal **coordinates. A normal coordinate d describes the
motion of the elastic system vibrating in its rth undamped, orthogonal mode.

References 1 and 2 contain detailed derivations of these equations; for
brevity, only a short outline of the derivation will be presented here.

Lagrange's equations of motion form the basis of a widely used method
of dynamic analysis of structures, and are written as follows:

cII2T - 4 -2~--- Or'. fz n'13 .. (3-1)

where q_ is the rth of n "generalized" coordinates (defined later) for the
system,'T and U are the kinetic and potential energies, respectively, of
the system, and qr is the "generalized" force input to the system. We

might define (somewhat loosely) the generalized coordinates qr as any n

independent coordinates which completely specify the configuration of the
system***. (It is always possible to describe the configuration of a system
having a finite number of elements by a finite number of coordinates, but in
many cases these coordinates are not independent of each other due to the
constraints on the system.) The generalized force Q is defined mathemat-
ically as

q q

where 5W is the virtual work done by the external forces acting on the
system in a virtual displacement bqr of the system (provided the displacement

conforms to the constraints on the system).

If we approximate a continuous structure by a system of lumped masses
(or inertias) connected by appropriate springs and viscous dampers, and if we
restrict the motions of the bystem to small oscillations about the equilibrium
(minimum potential energy) position, we then can obtain, by application of the
Lagrangian equations, the following form of the dynamical equations for the
structure:

I, n n
Uji DL; Kt qc for, (3-2)

Is .=! .1,I

• From J. B. Rea Co. Report 103, Methods for Solution of Combined Aeroelaet-it-

Missile-Plus-Autopilot Stability Problem for -the RTV-A-5 Missfle byJ, PJ-
Zemlin.

•* A normal coordinate expresses the displacement in a natural mode.

*** For a more complete definition, see reference 2, pp. 55-57.
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where n is the number of lumped masses, qi is the generalized coordinate (but

not a normal coordinate) of the ith mass, and the M Di and K are theIii, ii ij
inertia, damping, and spring coefficients needed to approximate the actual
structure. (Coefficients haviig a non-zero value for i J,are coupling
coefficients). Q is the generalized force input to the structure. These

equations describe the motions of each lumped mass, and are linear but
cumbersome, since n might need to be as high as 30 or more to result in an
adequate approximation of the structure. For pure bending or torsion of an
aircraft wing or fuselage, the Mij usually vanish for i - J, and the

damping is small enough (compared to the aerodynamic damping terms in the Qi )
so that it is often neglected, thus simplifying these equations considerably.
It is still necessary, however, to include all n equations.

The general solution of the above n equations indicates that each of the
i elements oscillates in a elastic modes, which are characteristic of the
system.* These r harmonic modes are exponentially damped if damping terms
are included in t equations. The relative amplitudes of oscillation of the
n masses in the k mode (of circular frequency wk) determine the kth mode

shape of the structure. For small damping (as in aircraft structures), the
damped and undamped mode shapes and frequencies are very similar. If, then,
we describe the motion of the undamped structure by coordinates d k, called

normal coordinates, describing the instantaneous deflections in the modes
k = 1, 2, 3. ..... s, we obtain the following forms for the kinetic energy T
and potential energy U of the system (using the equilibrium position for U a 0):

T2
r (3-3)

where MK is given by

MK CL KMdC J

* The total number of modes will be n, but one or more of these may be modea

of motion of the centroid of the system; s n (Reference 3).
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4

and is called the generalized mass for the k
t h mode, and the constant cik

is the relative amplitude at element i, with respect to unit amplitude at

some element p, in the kt h mode. The mode shape is said to be "normalized"

at p (p may be any point at which it is desired to have unit relative

amplitude, or cpk= 1). d,, then gives the actual motion in the kth mode,

of the structure at point p, and the corresponding motion at any point i

th
in the k mode is given by cik d

ikk

S- deflecton curve kth mode

XI,,

equilibrium axis

Notes as sbvmo Ck is negative

Figure 3-1. Fuselage Bending Mode Shape

If the deflection curve in the sketch is a fuselage bending 
mode, he aero-

dynamic forces acting on i along the structure in the kth 
mode will be a

function of the slope of the deflection curve at i as well as the deflection

(translational in this case) at i. For small deflections, this slope is

given byA ikdk- (ik is usually taken in radians for convenience.)

If we substitute the expressions for T.and U, in normal coordinates,

into the Lagrangian equations, we obtain the equations of motion for the

normal modes:

W. -CW 2d ) Q , for k :j,2,3 5 ( 3 )
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where Qk, the generalized force, is now defined as 5W/Bdk. Since the

actual system contains damping, the above equations for the undamped case
represent ail additional approximation over equations (3-2). In particular,
equations (3-5) give an infinite response (for the structure alone) at the
resonant frequencies, and indicate neutral stability at other frequencies.
As a refinement of the approximation, we add to equation (3-5) empirical
viscous damping terms to obtain

~~ ~ #~1Or km,,,iS (-6)

(using a common terminology for second-order systems) where tis an empirical
damping ratio (ratio of viscous damping to critical damping). The usual
range of t is from 0.01 to 0.05; in most cases the aerodynamic damping is
large compared to the damping in the structure, and the value of t selected
is not too critical.

Equations (3-6) are the desired equations of motion of the structure and
each mode is treated independently*. As previously stated, for pure bending
or torsion of aircraft wings and fuselages the inertia coupling terms in
equations (3-2) vanish (i.e., M = 0 for i J).
The generalized masses for equa on (3-6) are then given by:

S MLL(CLK) fO p- s (3-7)
la I

or for continuously defined mode shapes and inertia distributions,

r1MX 1 d (3-8)

where the integral is taken along the structure with mass or moment of
inertia distribution given by dM and deflection curve given as the curve y

A% example of the de4tm4n-+no -f the n generalized force Q,_ is given in
Chapter 6.

* If we transform directly from the damped equation (3-2), the resulting equa-
tions are similar to equation (3-6) but contain inertia, damping, and spring
coupling terms, and the modes are not structurally independent. Since the
damping of the structure is small, these coupling terms are small, and may
usually be neglected (for this order of approximation). Hence Equation (3-6)
is satisfactory.
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3.2 Collocation Approach Using Matrices

Most of the methods of aeroelastic analysis at the present time are
based on a modal description, but the increasing capacity and speed of
digital computers in manipulating high order matrices, together with the
growing complexities (both structural and aerodynamic) of high speed air-
craft, indicate a future trend toward the collocation point method. This
fact, reinforced by the conceptual simplicity of presentation, supports the
choice of a matrix formulation of the aeroelastic problem in the subsequent
sections of this chapter.

3.2.1 Dynamic Stability Equations for Rigid Airplane. The equations of
motion of a rigid airframe will be formulated as a preliminary to the con-
sideration of a flexible airframe. This formulation, albeit self-contained,
will be made relatively brief, and the reader is referred to standard re-
ferences 4, 5, and 6 for further details. Except as noted, the following
assumptions are made(See P-II-35, Reference 4):

1. The airframe is assumed to be rigid;
2. The atmosphere through which the airplane flies is assumed

fixed in space (i.e., it constitutes an inertial reference
frame in the Newtonian sense);

3. The mass of the airframe is constant; .
4. The airframe has a vertical (x,z) plane of symmetry;

5. All disturbances from the initial steady flight condition are
assumed small in the sense that only terms of first order
in the disturbance amplitudes are considered;

6. The axis system is defined as being an orthagonal system having the
origin at the center of gravity, the z axis in the plane of symnetry
and perpendicular to the initial relative wind, the x axis in the
plane of symmetry perpendicular to the z axis and the Y axis
perpendicular to the plane of symmetry. (These axes, often referred to
as 'Tstability axes", are not, in general, principal axes; however,
in virtue of assumption 4, the only non-vanishing product of inertia
isl );

7. The reduced frequency is assumed to be so small that the only
unsteady flow derivatives that need be introduced in the
equations of motion for the rigid airplane are (6M(YW) and
()N/4). On the other hand the flow is not necessarily
assumed to be quasi-steady (in c - dotrast to Reference 4), as
discussed in more detail in Chapter V.

It should be remarked that, from the analytical viewpoint, body axes
are not necessarily more convenient than axes fixed in space ("wind tunnel axes"),
especially in connection with flexible airframes, In particular, the assumption
of small disturbances (5 above) does away with the objection to variable moments
of inertia that often is advanced against fixed axes. Body axes, nevertheless
are chosen in the following in recognition of the fact that internal instrumenta-
tion (e.g., an autopilot) necessarily is referred to such axes.
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3.2.1.1 Equations of Motion in Body Axes.

:'O )'SJ7L 0 -)P

X'U?

Figure 3-2. Body Axes System and Velocity Components.

Let (x, y, z) be a set of axes fixed in the airframe, as described
in assumption 6 above ( See Figure 3-2 ); (U, V, W) the total velocity
components of the c.g.; ( , *) j ) the components of angular rotation;
(P, Q, R) the angular velocity components; (X, T, Z) the components of
force; (L, M, N) the components of torque; m the total mass; (Ixx, Iy,

I ) the moments of inertia; and I the product of inertia (Ixy = Iy = 0zz xz y yz
in virtue of assumption 4). The Eulerian equations of motion then read

S- ( Qw- RV) (3-9a)

Y= m(V tRU - Pxw) (3-9b)

/ItZ -I,(Wr( PV -Qu) (3-9o)

IA(ID -IR 5-IALL (61-10a)

7 Q :, ( - )
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The assumption of small disturbances, not yet introduced in (3-9) and
(3-10), now is invoked by writing*

P),FR) ,.o (3-12)

where U is the steady flight velocity, andC is an appropriately chosen
0

characteristic length (say mean aerodynamic chord in longitudinal motion or
wing span in lateral motion). Substituting (3-11) and (3-12) in (3-9) and
(3-10) and neglecting all terms involving products of the small disturbances
(u, v, w, p, q, r) then yields the small perturbation equations.

X U(3-13a)

=f kh (- tr Uo r) (3-13b)
Y (3-3b)

L (3-14a)

i'-*-I 9(3-14b)

> :- U )(3-14c)

It is of interest to note that the steady velocity of the axis system enters
the approximate equations (3-13) and (3-14) only through the terms U r and U~q

of (3-13b) and (3-13c).

The forces and moments acting on the airframe may be considered in five
categories: the force of gravity, the steady flight forces (aerodynamic and
thrust), the control surface or other input forces and moments initiating
disturbances from steady flight, the aerodynamic forces and moments associated
with these disturbances, and inertia loads (e.g., m i).

If large excursions from the steady state conditions are to occur, it
will, of course, be necessary to retain the gravity ana coupling terms
that are normally neglected in a small disturbance type of analysis.
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If in steady flight the x axis makes an angle 0 with the horizertal,
the y axis is horizontal, and the airframe then receives small rotations*
($p, e, *) about (x, y, z) respectively, the components of gravitational
force along the disturbed positions of the axes are (see Section 11-5 of
Reference 4 for detailed derivation).

V 8)/ y 111 M8R51nt4*C*S) (4 CO. ~ in a ~(Cs.- /~

The steady flight force has only components X0 and Zo, while the steady

flight moment about the c.g. vanishes identically in eonsequence of the
assumed equilibrium.

Turning to the aerodynamic forces, the velocities (u, w, q) produce
only (X, Z, M) forces in virtue of symmetry considerations similarly, the
(v, p, r) velocities produce only (Y, L, R) forces (no aerodynmic
forces are associated with the angular perturbations (cp, e, *) due to the
use of body axes). Moreover, in accordance with assumption 7, time lags
between velocity perturbations and the forces that are produced thereby
may be neglected except as noted, whence the forces Pre in phase with (or
opposite in phase to) the velocity perturbations. The only exception to
this last statement that usually is considered is the lag between M and w,
which leads to the introduction of a term (/) 4. That (aW/d) is the
only unsteady flow-derivative of importance in the equations of longitudinal
stability can be inferred from an order analysis (in Glauertts mass para-
meter p of the dimensionless equation 7, Reference 7). It should be empha-
sized, however, that this conclusion does not necessarily lend support to a
quas-i-steady flow hypothesis, and there may be important contributions to
(W/4) from unsteady flow effects other than the conventional downvash
lag; m)reover, the quasi-steady flow hypothesis may not form an adequate
basis for the calculation of downwash lag (Reference 8). It follows by
analogy that a term ( N/i) 4, also should enter the lateral stability equa-
tion; while it appears that unsteady flow contributions to this term are uot
too important for fin alone (Reference 9), little data is available on the
effects of wing sidewash lag.

On the basis of the foregoing discussion, the total forces can be
expanded as follows (the derivatives in these expressions are to be evaluated
in the equilibrium configuration in virtue of the assumption of small dis-
turbances):

X 7-~2 +X 8( -6

* The final position of the airframe is independent of the order of these

small rotations, in contrast to the result for non-small rotations (i.e.,
tos for which products of angles can not be neglected) which are non-
commutative.
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- ±(.a r + ye (3-16b)

L -J L)- +r L (. r+ L, (3-17a)

= ( +( %,.)+( 9  t MV (3-17b)

where (X, Y1 Y Zl' Ll' Ml, N 1) represent small disturbances due to

control surface deflections or other sources. Moreover, in

consequence of the assumed equilibrium condition of steady flight,

the terms in square brackets in (3-1
6a) and (3-16c) vanish identically.

Finally, substituting the force and moment expansions (3-16) and

(3-17) in the equations of motion (3-13) and (3-14), regrouping 
the

latter into longitudinal and lateral equations, and ordering the terms

in the conventional manner, the results are:

(n L Z coe,)o =Xj (3-18a)+( 8 c 0 o ,:X (3-18b)

(3-18c)

w1Q c~)r (o~)' (ncs e)+ (rrlTi- 6--) <m i ) 41 CYi
(3-19a)

In stick-free stability studies control surface deflections must be

considered as separate degrees of freedom rather than input sources;

see, e.g., Reference 6.
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These are dimensional. forms of the equations of motion about the "stability

axes" used herein. In the following sections they will be recast in dimension-
less form.

3.2.1.2 Dimensionless Notation. It is expedient to place the equations
of motion developed in the preceding section in dimensionless form, both in
order to exhibit scale effects more clearly and as a preliminary to the exam-
ination of the importance of aeroelastic terms. Following the original anal-
ysis of Glauert, Reference 10 (but in revised notation), dimensional consid-
eration of the motion of a rigid airplane leads to the introduction of the
dynamical parameters

p relative density (3-20)

F 8 Froude number (3-21)

where p is the air density, S the wing area, I an appropriately
defined characteristic length, and U the flight velocity (the subscript
zero now being dropped). In addition, there exist the well known, aerodynamic
parameters

M = -Tj a, a Mach number (3-22)

= UT.2/_I = Reynolds number (3-23)

where a is the velocity of sound andl/ the coefficient of kinematic
viscosity of the air. Two geometrically similar aircraft having identical
values of these four parameters will respond in essentially identical fashion
in proportion to their scale to similar disturbances from similar initial con-
ditions.

The relative density parameter p, being proportional to the ratio of
airplane density to air density, is probably the most important of the
dimensionless parameters in the equations of motion of a rigid airplane.
I.n gencral, a large value of .i may be regarded as typical of dynamic stab-
ility studies; conversely, a small value of p would call for a reconsideration
of some of the basic assumptions, particularly 7, set forth in Section 3.2.1.

The parameter F, usually designated as the Froude number, is proportional
to the ratio of aerodynamic to gravitational forces. This ratio is determined
by the equilibrium flight requirement (neglecting the contribution of thrust to
lift) that the lift force must balance the component of weight normal to the
flight path, viz.

WADC TR 55-173 65



where CL is the steady flight lift coefficient. Substituting U2 in (3-24)

from (3-21) and m from (3-20), it is found that

F ;2n~o go OCO Go(3-25)pS CL

In view of the over-all importance of the lift coefficient CL, it is

customary to use p and CL, rather than p and F, as the principal
similarity parameters in dynamic stability studies.

The parameters Ma (Mach number) and R (Reynolds number), representing

the ratios of aerodynamic inertial forces to compression and viscous forces,
respectively, enter only through the aerodynamic derivatives. These deriva-
tives are relatively insensitive to variations in the Reynolds number (although
stalled flight may be an important exception), whence it usually may be relega-
ted to the background. On the other hand, especially in the transonic regime,
the aerodynamic derivatives (particularly CL , CD and Cm ) may exhibit important

u u
dependences on the Mach number Ma, as borne out in Chapter V.

In order to place the equations of motion in dimensiorless form it is
necessary to choose a set of fundamental units. Following Glauert, (Reference
11), the unit of time will be defined by

and the unit of mass by m. In contract to Glauert's choice off as the unit of
length, however, it is more in keeping with modern practice to choose U as the
unit of velocity, whence the derived unit of length is-J'r - . In this
connection, it should be remarked that the length I is still undefined, and it
will be found expedient to define it differently in dealing with the longitudinal
and lateral equations.

3.2.1.3 Dimensionless Longitudinal Stability Equations. The longitudinal
equations of (3-18) now will be placed in dimensionless form, following the
discussion of the preceding section. TL'2ughout this section the characteristic
length I will be chosen as the mean aerodynamic chord c, so that the relative
density parameter becomes

A = kn/)05C (3-2T)

In addition, it is convenient to introduce the moment of inertia parameter

Ks k C - =(3-28)
C.
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Based on the choices of T and U as units of time and velocity, the
dimensionless variables are defined as follows:

t e/r- Ut /,'J. (3-29)

CA= ' ItJ .(3-3o)
(3-31)

The variable 0, being already dimensionless, requires no modification.

The non-dimensional forms of the stability derivatives in conventional
notation are (see Section 11-14 of Reference 4 for detailed derivations):

pu~sCD~D) 0 (-32)

-/0 u5 C, +CL, C~(-3=±f _ U (CD (3-33)

@j : U5C C (3-34)

L '"I (3-36)

DcNC __,SC,

C9 U, 4 (3-38)
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DT.5 Li a, ;. (3-39)

4'

~~I2T$OL.vr~(3-40)

TJ -(3-41)

a,- _ p- 5 CL., (3-42)

U2 CrI (3-43)

The "input coefficients" (CD CL  C Cm usually will be associated with

control surface deflections,/but ihere is no need to restrict them at

this point.

Substituting (3-27) - (3-43) above in (3-18), using (3-24) to

eliminate g, and replacing @o by' the initial angle of climb, there

result the dimensionless equations

d (C P+.CU)CA + tL(co .. CLfr-±-Le (3-44a)

C~C 4 L'-dt 4 dt +Z .L
(3-44b)
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(3Q14lc)

The fact that the displacement 9 introduces no aerodynamic forces makes
it convenient to introduce 0 and the dimensionless angular velocity

{~~ ~ U r s-- (3-45)

as separate coordinates. The result is to replace (3-44a, b, c) by
four, first order equations, consisting of (3-44a, b, c) with (dO/dt)
replaced by i, and (3-45). These first order equations have the ad-
vantage of being more directly adaptable to a differential analyzer.

In connection with the assumption that p is large, it may be noted
that (4p) 10L is negligible compared with one in the coefficient of

q
(dO/d7) in (3-44b). On the other hand, terms not containing the p
factor in (3-44c) may not be omitted (there being no terms dominating
them). In addition, for all practical configurations (stalled flight
excepted) CD may be neglected compared with CL in (3-44b).

The manipulation of the stability equations and their extension
to the elastic airframe is expedited by placing them in the matrix form

F(3-46)

where _(r) denotes the dependent variable, column matrix*

__ & W- Y(3-..47)

Column matrices will be designated by braces.
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F(r) the "forcing" or "input" column matrix

F(r the (3-4a).

C the square matrix (neglecting CL / p compared with one and CD compared

with CL)
a(3-49)

_ C o o -I L

44
0 0 X

and 7 the dimensionless operator defined by

= : -n-u ~(3-50)

The superscript r on these matrices signifies that they apply only to
the rigid airplane (see (3-97) - (3-104))for the corresponding results for
the elastic airplane) and may be dropped if there is no danger of confusion.
In addition, a superscript "s" could be added to denote their connection with
the symmetric, or longitudinal motion (in contrast to the antisymmetric, or
lateral motion), but the type of motion usually will be clear from the context
of the discussion.

3.2.1.4 Dimensionless Lateral Stability Equations. In transforming the
latera. equations of (3-19) to dimensionless form the characteristic length
, will be chosen as the wing span b. so that the relative density parameter
becomes

,)J /= MM (3-51)

while the required moment of inertia parameters are defined according to

KA 92~xnb (3-52)

CC55 17370 (3-53)

K C : Im K, (3-54)
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The dimensionless time f remains as defined in (3-29), being independent
of the choice of characteristic length. The dimensionless sideslip velo-
city is denoted by

while the roll and yaw angles, p and 4, require no modification.

The non-dimensional forms of the stability derivatives in conventional
notation are (cf. Section 11-14, of Reference 4):

_ .f _A 5 Cy C -(3-56)

-~ w±/P(3-57)

C2 C/ __ (3-58)

5~ Cr (3-59)

_t..- J5bcyi CC C60)

-_ Sb Lm U 5 (3-61)

B*J~ P- /TJ5 bClf) Cr~ (3-62)

I_ _L,/tJIb CA,. , ~ (3-6k)

4

-aY = I OT JUbCnr C,,,,..- a (3-65)

J I TJ5C (3-66)

LO .ptuSbC , (3-67)

Le V' bfU CCC (3-6)
Z

No! - ,..P U's- bP_. (3-68)
:2
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As in the longitudinal analysis, the input coefficients (Cy '  Cn)

are not restricted as to source, albeit usually generated by control sur-
face (aileron or rudder) deflections.

Substituting (3-51) - (3-68) above in (3-19 a,b,c) and proceeding as
in the longitudinal analysis, there result the dimensionless equations

o.,O~ -zC 4&nf'p I
jli / A d 2. d 4(i Cwd tC ,V -i

(3-69a)

,gf (:JC (3-69b)
2 ".f 4 t a t 4t

4d 4

(3.- 6 9c)

Alternatively, following the longitudinal analysis and introducing the angu-
lar velocities and angular displacements as separate coordinates, (3-69) may
be recast in the matrix form

_¢¢ ) F_ r) (3-70)

-r-r; T P (3-731)

_F ) 1 ,., ,,C u,, Cnl c, o (3-72)
(3-73)

-C
&~i~ C lC 0

0 -I 0 A 0

If necessary, a superscript "a" could be added to these matrices to denote
their connection with the antisymmetric or lateral motion.
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3.2.2 Dynamic Stability Equations for Elastic Airplane

3.2.2.1 Longitudinal Stability Equations for Elastic Airframe. In
dealing with the longitudinal, or symmetric motion of an elastic airplane,
only the transverse (z) deflections are of aerodynamic importance. In the
case where the airframe is divided into a number of rigid segments, the
torsion is, of course, of aerodynamic importance also, but in the following
formulation torsion is assumed to be taken into account by appropriate
choice of the h with respect to the elastic axis (or other nodal line for

i
twist). Moreover, in virtue of "the fact that changes in u, the fore and
aft velocity perturbation, can occur only very slowly (compared with the
motions of elastic deformation), the aeroelastic modifications of the
derivatives entering the u equation may be calculated on a quasi-static
basis (see Section 3.2.2.3), and only the w and q equations need be con-
sidered in the following discussion. To be investigated are the effects
of the motions of the center of gravity on the flexible degrees of free-
dom, the mutual effects of the elastic degrees of freedom, and finally the
effects of the flexibility on the rigid equations. Using the complete
equation approach, quasi-static or steady state corrections for transverse
deflections are not needed for the rigid derivatives as these effects are
accounted for in the above mentioned flexibility calculations. Simplifi-
cations to the complete equations are treated at the end of this chapter.

Let the transverse deflections at points i - 1,2, ...... n be incor-
porated in a column matrix* z(e) according to

where hi is the deflection of the itth point, rendered dimensionless with

respect to the characteristic length )? (eventually I will be chosen as the
mean aerodynamic chord in the longitudinal equations, but there is no necd
to restrict its choice until the equations governing elastic deflections
are combined with those governing rigid body motion) and as a function of
the coordinates (xi, yi) and the dimensionless time t . Further, let the

ii
transverse deflection at the point i due to a transverse f f at the

point J be given by z.= Q 2 /B)ai fj, where B** is a characteristic stiff-

ness (e.g., B is Ed3 /12 (I - ja2) for a thin plate of flexural modulus E,
thickness d, and Poisson ratio p)a and ai is a dimensionless influence
coefficient (cf. Section Y..1.1, where tNe aii are not dimensionless);

then the response to +he column matrix of forces f may be exhibited in
the form

J~,=[f/EL 
(3-75)

* The matrix notation used herein follows that of Reference 12. All

symbols representing matrices are underscored.

** The units of B are lb-ft = L2 MTj-2.
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where a denotes the square influence matrix comprising the set of influence
coefficients.

The forces comprised by f may be distinguished as either aerodynamic
or inertial, writing

f aero c.g. accel. weight + Felastic '

L(3-76)

where A is a diagonal matrix comprising the dimensionless (with respect to
s) areas associated with the individual points*, viz.

A. 0 0 0 -1
0 A 0 0o (3-77)

E.is a column matrix comprising the local lift coefficients at the points, M
is a diagonal matrix comprising the dimensionless (with respect to m, the total
airplane mass) masses associated with the points, the braces denote a column
matrix having as its elements the reversed transverse accelerations due to the

rigid body motion, and j(e) is the acceleration matrix resulting from elastic
motion. If the acceleration terms are rendered dimensionless by introducing
the notation of the preceding sections (using the length I in defining p) and
(1) above and the column matrices**

~ {~ (3-78)

* In dealing with non-planar portions of the airframe, such as the fuselage,
the Ai must be defined as equivalent areas to which the CY are referred

(but usually aerodynamic forces on such surfaces may be neglected). In
general it is not convenient to choose all the area elements equal, but if
such a choice is made, the matrix A may be replaced by a scalar, viz. the
dimensionless element of area.

** n.b., 1 is a unit column matrix, whereas the standard unit (square) matrix
i sdenoted by I.
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(3) may be rewritten (3-0)

f~4 -oJS[ j2 1 (-A LCL ,,'rG 4 1./a + 2AA 1 hi
It may be noted that~is a column matrix having the elements Mi of the
diagonal matrix M, while I is a column matrix having the elements M XZA

The lift coefficient matrix c1 may be conveniently decomposed accord-
ing to

Qp + + _E 4 (3-81)

representing the effects of change in flight velocity, change in incidence
(due to both rigid body and elastic motions), and input disturbances, respec-
tively. Autopilot terms must be regarded as included in the input coefficient

c, but it should be emphasized that the autopilot response may depend on
both the rigid body and elastic motions (the latter in consequence of the
locations of sensing elements), so that such terms should be separated out in
the final equations, (3-97) - (3-o14) below. The column matrix C conprises

the equilibrium values of local lift coefficient, and C is defined by
(cf. 3.2.1.3 (3-33))

(3-82)

2P is a square matrix (the factor of 2 being simply a convenience) by which
t~e (column) incidence matrix* a must be multiplied to obtain the correspond-
ing (column) lift coefficient mEtrix (cf. Chapter V, Basic Wing Problem). The
incidence matrix is given by

2L =./- (Wi -9ax + a te- (3-83a)

+ (2 ,- (3-83b)

where D is a streamwise differentiatiornu square matrix defined in such a way
that

S _(3-84)

W It should be emphasized that ca represents a distribution of local

incidence and not simply the rigid wing angle of attack.
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The determination of the matrix P rests on aerodynamic theory and will be
discussed further in Chapter V, but it should be specifically remarked that,
in consequence of induction effects, P is not generally diagonal (but if the
only deflecting aerodynamic surface were a wing with chordwise sections sel-
ected as the area elements Ai strip theory would render P diagonal).

It also may be remarked that P may contain the time differentiation operator j
unless the quasi-steady hypothesis is invoked; in particular, P is assumed to
account for downwash lag when operating on w.

If (3-74) and (3-80) are substituted in (3-75) and if (3-81) and (3-83b)
are introduced, the result may be placed in the form:

(3-85)

Introducing the aeroelastic parameter

Introducing

(3-86)

(3-85) may be written in the form

CLL -(9(P LL1A tA I

where I denotes the unit (diagonal) matrix.

The foregoing development was based on the influence matrix a because
of its conceptual simplicity, the greater ease (compared with the stiffness
matrix) with which it may be determined experimentally and the fact that it
is required if the dominant mode of natural oscillation is to be calculated by
matrix iteration. Alternatively, (3-75) may be replaced by the inverse relation

0 IS (3-88)
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where the (dimensionless) stiffness matrix k is the inverse of a. Pre-
multiplying (3-87) by k then yields (since _-la I, the unit matrix)

- - -,(3-89)

A second modification of(3-87) might be motivated by the fact that 1
it could be more expedient to deal with the inverse aerodynamic matrix P
rather than P. Thus, the usual aero dynamic problem requires the solution
of an integral equation to obtain the lift distribution from a prescribed
incidence distribution, and the resulting matrix formulation is (including
only the effects of incidence)

-I

C 2 (3-90)

Then, rather than invert (3-90) directly, (3-89) may be premultiplied by

p-1 A-1 to obtain the modified result

+ P -
+ (At~ ~ '~t ± ~if' Y ) -~(3-91)

where Q denotes the matrix

P_ A (3-9)

and the cy matrices are defined according to (3-90), viz.

2o( (3-93a)

(3-93b)

E-e, =2 (3-93 c)
The' % and al matrices will be specified directly in most problems, so that
(3-93a) and (3-93c) need not be solved; however, the matrix o does not repre-
sent a true incidence and must be evaluated via (3-93b).
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The matrix equations (3-89) will be designated as the basic descrip-
tion of the elastic degrees of freedom, although it often might prove more
convenient to choose one of the alternative forms (3-87) or (3-91). It
then remains to calculate the aeroelastic forces introduced in the original,
rigid body equations. As remarked earlier, the aeroelastic contribution
to the X component of force will be neglected except insofar as the equili-
brium values of the stability derivatives in the u equation are modified
for static deflections.

The summation over the entire airplane of the aeroelastic contribu-
tion to the Z force is given by the sum of those elements in f that arise
from elastic deflection, viz. (cf. (3-80) and (3-83b)),

( -P5 JA U A A+ A E,)\ Oki (3-94)

since the effect of multiplying a column matrix by the unit, row matrix 1'
(the transpose of the unit, column matrix 1) is to sum the elements of the

(e)*
former. Similarly, M is obtained by summing the products of the elastic
deflection elements of f and the -x. components; this operation may be

effected by premultiplication by - - , viz.

The modified equations of motion for w and q then follow after setting

c and subtracting U2 S) -I Z(e) and p (US 2 ) -l(e) from the left
hand sides of (3-44b) and (3-44c), respectively, with the results

(C i(1+C1 _4 41&)' t LCLtaY (396e
'(c + C - (3-960)

* M e ) = elastic moment.
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The original, matrix formulation of the longitudinal stability equations
for the rigid airframe, as set forth in (3-46) - (3-49), now may be extendedto the elastic airframe by combining (3-89) and (3-96a,b) above with (3-44a)
and (3-45). The results are

C(e)]/e) .(e)--e~e _(3-97)

where .(e) denotes the partitioned column matrix

" " -(3-98)

rdL (3-99)

F(e) the partitioned column matrixL 7-
(3-100)

and C(e ) the partitioned square matrix

(e)F )  , R(e)]

-c  I I- t[E  '- '  (e) (3-101)

In this last matrix, C(r) is the rigid body matrix given by (3-49), R(e)
denotes the column of row matrices comprising the aeroelastic forces in
the rigid body mode equations, viz.

I,WAD ( M A ) (3-102)
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E (r) the row of column matrices comprising the rigid body mode forces in the
elastic mode equations, viz. (cf. (3-89))

ZCLt,)M i*] (3-103)

and E(e) the square matrix

-(e)P + (AA D (3-104)

It again should be emphasized that the formulation of (3-97) - (3-104)
does not include autopilot terms explicitly, but that such terms may be re-
garded as included implicitly in the input matrix c To recover an ex-

plicit formulation it would be necessary to: (a) introduce an appropriate
equatids (s) for the autopilot degree(s) of freedom, allowing, in parti-
cular, for the effect of the elastic deflection h on the autopilot sensing
elements; and (b) separate out the autopilot terms from cel, and therefore

e  and incorporate them on the left hand side of (3-97) by introducing the
appropriate, additional terms in c(e). As mentioned in section 3.3, it may

be adequate to take the autopilot degrees of freedom into accoknt by means of
appropriate, time lag factor.

3.2.2.2 Lateral Stability Equations for Elastic Airframe. The elastic
deflections of interest in connection with the lateral stability equations are
of three types: (a) the static, symmetric, transverse deflections, which affect
the equilibrium values of the angle of attack and dihedral distributions of the
wing; (b) the dynamic, anti-symmetric, vertical z deflections, which are pro-
duced by all of the lateral motions but which sensibly affect only the rolling
moment; (c) the dynamic, lateral (y) deflections of the fuselage and fin, which
affect all of the lateral stability derivatives to some extent. The static de-
flections* must be included in the calculation of the stability derivatives
entering the "rigid airframe" equations (3-69) but will not be considered
further in this section. It is convenient to treat the antisymmetric, vertical
and the lateral deflections separately; the latter, being more closely analogous
in effect to the symmetric deflections of longitudinal motion, will be considered
first.

* of type (a)
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Let tie lateral deflections be incorporated in the column matrix

~e) (3-105)

where now denotes a length characteristic of the lateral motions (later to
be chosen as the wing span b). Further, following the discussion of

Section 3.2.1.4, let a, be a dimensionless structural influence matrix such
that

y _(3-1o6)

The lateral force matrix f1 may be placed in the form (see equation 3-53)

( 3-i07 )

where A1 is a diagonal matrix, defined as in (3-54), c a column matrix

-l -Y
comprising the local side-force coefficients at the points, I a similar, mass

matrix, and the matrix element in the braces the lateral acceleration at the
point located at x. and z.. Introducing the previously defined dimensionless

notation and column matrice. 1 and as defined by (3-7b) and (3-79) as well,
as

](3-108)

(3-.07) may be rewritten _ , 12 C,.-+9 4-C )

The local aerodynamic incidence (a positive incidence being one that
would produce a positive side force in steady flow) is given by

-~ _ ~ ~ ~ -(Q~c')~'(3-110b)
where D is the streamwise differentiation matrix defined by (3-61). Adding the
side force coefficient associated with 0, to the input term c then yields

(there being no change of flight speed to consider here)
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-1
Combining (3-105) - (3-109) and (3-111) and premultiplying by a

th n yields

(-'M s, /4-'A + ) - C L a. Y (3-1.12)

where

-I

S" --- (3-114)

Of course, as in (3-64). it may be preferable to deal with the influence
matrix a rather than the stiffness matrix k.., but the required modification

may be obtained from (3-112) by premultiplying by a1  Similarly, it may
-l -11

prove convenient to premultiply (3-112) by P A11 (cf. (3-68).

The total side force due to the lateral elastic deflection is given
by (cf. (3-71))

(e)

while the corresponding rolling and yawing moments are

e) M - 2 -A -1

N W%+(317

Turning now to the antisymmetric transverse deflections, let them

be incorporated in the matrix (antisymmetric in y)

Noting that, in the antisymnetric case, the only rigid body motion con-

tributing to the relevant inertial forces is roll, the corresponding force
matrix may be placed in the form

A + -P + (3-119b)
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where denotes the column matrix

.2=/~ ~ (3-120)

and cna) the antisymmetric (in y) lift coefficient matrix

(44

The calculation of the local lift coefficient derivatives, , land r

is relatively more complex than in the two preceding cases, and further con-
sideration thereof will be delayed until Chapter V. The matrix re-

presents thc antisymmetric, input forces, including autopilot effects.

Proceeding as before, (3-118) - (3-121) lead to the equations of motion

zf l z -i . X(+ - A + - ( 3 -1 2 2 )

+ ( ~ ~ A ~ .Z -I-

where k is the stiffness matrix associated with the antisymmetric set of
points in i , and (2 is obtained by substituting B for B in (3-113). The

pont i 2 2 2 4-

total rolling moment resulting from the motion h2 is given by

(e)

The modified. rigid body mode equations now may be obtained by
setting j = b and suttracting

(fu2 5[ (e)

and

C( p, 55- )-7i,
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from the left hand sides of (3-69a,b,c), respectively, the end result being

& c

Q% C.AA .4 2Q- CLP- Ltl~

+ M _r- A P,+ ,D)_ , - i, (3-124a)

2. ;LA +(3-124b)

+ / 6I. ( A+ 6, .3X A+,/ A f (3-124c)

Finally, combining (3-112, (3-122), and (3-124) together with p ,X and

r =A the matrix formulation of (3-70)-(3-73) is extended to read

(e) .(e) (3-125)
I(e) r ' , I

2._-, (3-126a)

" ~ ~ ( q ''@ , ' z (3-126b)

01@) (e) (e)

C- -2

F. 0 (3-128)

E(Vi (e)
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where C( r ) is given by (3-73) and the remaining terms in (3-128) by

R, =--, -- A ) -j .... .i'[ . \ _+A, P P,

(3 132)

, +E P Z~

2- 1 -2-ir -- >J (3 13 0)

(L

-@ I CLt .Y t', &_ ](3-131)

It is again emphasized that autopilot effects are not included explicitly
in the formulation of (3-125) - (3-134) but may be incorporated through c( a )
and I

3.2.2.3 Quasi-static Solution For Elastic Deflections. If the mass
parameter p is sufficiently large, and X is not large, as it will not be in
those problems where the motion of the airplane as a whole is of principle
interest (in the flutter problem, where the elastic motions are of principle
interest, Xwould be large) it evidently is permissible to omit those terms

of (aph) in (3-85). The neglect of those terms is tantamount to the assump-
tion that the elastic deflections are in phase with the loads that produce them,
and the resulting approximation may be designated as "quasi-static". Only the
longitudinal equations will be considered in this section, but an entirely
similar treatment may be accorded the lateral equations.*

Neglecting the terms of (plh) in (3-85) and solving for h yields
(the rigid body motions being as yet-undetermined)

* It should be remarked that the method of this section might be used to calcu-
late quasi-static aeroelastic effects on some derivatives (e.g,, all u derivatives),
even though elastic degrees of freedom were incorporated in the complete analysis;
moreover, some portions of the airframe might be treated quasi-statically and
others by adding degrees of freedom .... e.g., wing and tail, respectively.
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The terms in "  q also may be neglected in many applications but could prove
important in dealing with swept wing or fuselage deflections. Various modi-
fications of (3-135) are possible; thus, if it is desired to make use of the
stiffness matrix k rather than the influence matrix a, (3-135) goes over to

P,(XK+A[JC +A)+MA P)V

_iM)a M IG+7-

(3-136)

The implicit solution of (3-135) may be used for a direct calculation ofthe aeroelastic forces in the modified, rigid body mode equations of (3-96).
Neglecting the terms of (p'1h) in these equations, it is required to calculate
A P D h, which may be evaluated from (3-135) as

-( -' -+,*-'A p + M-%)j -+ o
(3-137)

where Y represents the aeroelastic inversion matrix

-- I )-I (3-138a)

+ (3-138c)
Substituting (3-137) in (3-96) then yields

+[ °Y M -+ +'"Y A
[C T 7 C139a().')m[._ ) v-- (C ±c) A m__J )
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The equations (3-139), together with (3-44a) and (3-45), now may be attacked
exactly as would be the original equations of (3-44a,b,c) and (3-45); in
particular, the order of the system of differential equations has not been
raised by the incorporation of the quasi-static, aeroelastic correction terms.

In concluding this section, it again should be remarked that the
quasi-static, aeroelastic correction of the rigid body derivatives usually
will be adequate for torsion of a straight wing or tail, even though wing
bending may have to be introduced as a separate degree of freedom (cf. the
discussion of Section 3.2.2.1.

3.2.2.4 Steady Flight Aeroelastic Problem. The steady flight aeroelastic
problem may be solved as a special case of the results of the preceding section.*

Satn1representing the lifStarting from (3-135),--i may be replaced by j_ ersetn telf

coefficient distribution calculated on the assumption of a rigid airframe,

the terms in u,w and q dropped, and 1CL tanYo replaced by - 1 CL (cf. (3-15)

where the transverse gravitational load is proportional to (cosY-e sin Y ) to
represent the effects of dead weight load; the result is

q- z_ ~' - jC M (3-14o)

by Having ho, the lift distribution over the elastic 
airframe is given

(e) ( r)
A~j +2 6 eD (1-141)

* It is not implied that the steady flight distortions should be calculated
from the identical equations used for the quasi-static correction problem,
but only that the formulation is similar. Indeed, the steady flight dis-
tortions usually should be calculated more accurately, since they may have
important effects on stress distributions and drag.
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Substituting (3-140) in (3-141) and incorporating Y from (3-138) yields*

) (r)
P) o T-Y) _ +'YY) , (3-142)

Similarly, static control surface effectiveness may be calculated simply by
replacing c by c and neglecting the dead weight term in (3-142), whence

A c 17- ) LA (-143)

The result (3-140) also is required for the calculation of effective
dihedral, but the details of this calculation depend on the type of wing under
cons iderat ion,

3.2.2.5 Free Vibration Problem. The free fibration problem will be
discussed in detail in Chapter IV, but it is of some interest to consider it
as a special case of the results of Section 3.2.2.1 (or, for antisymmetric
vibrations, Section 3.2.2.2). If all aerodynamic and rigid body terms are

neglected in (3-87) the result is

0_ M (3-144)

Now for simple harmonic motion of angular frequency w the operator A is given

by (assuming the harmonic time dependence exp(iwt))

A " w (3-145)

Moreover, it may be verified that

x (3-146)

Then, substituting (3-14-) and (3-146) in (3-144) yields

S oI2/13) CL i  (3-147)

* It may be noted that TA C (r) C
Ai LTR -
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which constitutes a system of homogeneous, algebraic equation in h the

characteristic values of which are the values of (ml co /B) for free
oscillations.

An expression for 2 that is of particular value in approximate
calculations is obtained by premultiplying (3-147) by the inverse matrix

h = h and solving to obtain

.L'b. L(3-148)

Rayleigh's principal then states that if an estimate for h that has an
error E is substituted in (3-148.) the resulting approximation to the lowest22

("dominant") value of w is in error only by a term of E 2.

3.2.2.6 Galerkin Formulation of Aeroelastic Equations. In the
formulations and discussions of the preceding sections it was implicit that
the number of elastic degrees of freedom was equal to the number of elements
in h (or the sum of the elements in h and h in Section 3.2.2.2).

The corresponding methods of direct solution w411 be discussed in Chapter VI.
An alternative approach, which yields results equivalent to those based on the
assumption of a prescribed set of deflection modes in a Lagrangian formulation
(cf. Section 4.3.1) is afforded by the application of Galerkin's method of
solution (Reference 12, p. 288; also Reference 13). This will be carried out
for the longitudinal equations, after which the results for lateral motion may
be established by analogy.

The first step in the conversion to a modal formulation is to expand

the deflection matrixfhi(xi, Yi. t)j in a set of prescribed space dependent

modes fei(J)(xi, y()) having the time dependent amplitudes d(J)(Z), viz.i_ (Xil _i)l
h_= (3-149)

A similar decomposition of the area, mass and lift coefficient matrices in
(3-87) also must be made, the end result being m equations for the d(J).
The longitudinal analysis will be restricted to the simplest case m = 1, viz.
h = de, but the results may be extended readily to the more general case. In
The latter respect, it should be remarked that coupling between elastic modes
generally is negligible in dynamic stability analyses (in contrast to flutter
analyses, where mass coupling usually is the decisive factor), although there
may be exceptions such as bending-torsion coupling when the corresponding de-
flection modes are based on an elastic axis approximation for a swept wing.
The case of two uncoupled modes will be illustrated by the Galerkin formulation
of the lateral aeroelastic equations of motion. It also should be remarked
that it often might be expedient to assume a deflection matrix for one elastic
motion while retaining a collocation description of a second motion, e.g., a
fuselage deflection mode might be assumed but wing bending treated by colloca-
tion.
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Substituting h = de in (3-87) and premultiplying both sides of the equa-
tion by e-1 = e' the-result is

IA L-\ f L: a (3-150)

In this result the coefficients of u, Xw, w etc. are simple scalars (rather
than matrices of order higher than one). Moreover, if h is replaced by de
in (3-96a,b), the results together with (3-150) above and (3-44a) and (3-75),
constitute a set of five simultaneous differential equations in the (time
dependent) unknowns u, w, q, and d. The corresponding matrix formulation
is given by (cf. (3-97) - (3-i04))

~e) (e) (e)(31)

__- ) 3 (3-152a)

F(e) [ -E( e.'a.A c_ } (3-153)

1-- -~ 3l1

where C(r)is given by (3-49), R(e)denotes the column matrix (ef. (3-102%

R C-)  A ' eA ,-''A1PAe _P P_
(3-155)
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E(r) the row matrix (cf. (3-103))

(3-156)

/ -1L A t' k -1 'I Lt aVA L

and E(e) the scalar (cf. (3-104))

E e a _A +pC!& A P e+ 'a eE e' (3-157)

Various modifications of the formulation provided by (3-151) - (3-157)
above are possible, in particular those starting from (3-89) or (3-91). If
(3-89) is used as the starting point the only modifications required in the end
results of (3-151) - (3-157) are: (a) strike out the iqfluence matrix a from
the last term in F(e) ana from each of the terms in E ( r ) and Eze); and (by

replace Xe" e by xeI k e in the last term in E(e). A Galerkin approximation
based on the influenice matrix, sach as the foregoing, is generally more accurate
than one based on the stiffness matrix; however the amount of labor involved in
the latter approach usually is less (depending, to some extent, on whether k

is given or must be determined by inverting a).

A possible modification that generally would increase the accuracy of
the foregoing approximation would be to estimate the derivative of e, say

e* a D e (3-158)

rather than e, which then would be replaced by D-1 e*. This would eliminate

the relatively inaccurate operation of differentiation at the expense of some
increase in complexity of the resulting equations.

A Galerkin formulation of the lateral aeroelastic equations may be
derived by an analysis paralleling the foregoing. Introducing the elastic modes
dI e1 and d2 2 the end results are (cf. (3-126) - (3-134)

:{£ t r ,/d.d I-5b

Y~c'v r 2.
0 I1(3-16519)(C) -C' RO R 2-., (3-161)
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-- - - (3-162)

FR ts t; .z / 1

A , J e,. _) e,)-( ,M, _,AR .!, AB e,MA . ,A.F C),o, o,3.

(3-163)g,'- (e , L a ,e, a., A, 1,),-i (_ a, .,, _, P ,

bii

.._,e aii

g~m>3-  atN - 'e  M -_',Ae, LA e',, a. . e+: , (3-164)

ILL' (3-165)

(e) 
2-

Ej 5," e:e ta C ,16s.8- G (3-166)

Again, the transition to a stiffness matrix formulation may be achieved by
(e) (r) E(r) E(e)anE )

striking out 21 and a2 in F E E , E and E(e) and replacing

e Z e1 andX 2 1_l' k 2 
2p respectively.

The foregoing results may be transformed to integral form by taking
the limit as the number of elements in the modal matrix tends to infinity.
No advantage is to be gained by such a transition; however in those problems
where the integrals would have to be evaluated by numerical methods, as would
be the case in any practical application.
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The selection of a deflection mode (or modes) in the Galerkin formu-
lation is largely a matter of judgment. In the "quasi-static" approximation,
the static deflection mode would constitute the most obvious choice, whereas
the use of the dominant mode of free vibration would be preferable wherever
elastic motion proved to be of primary importance. (In the latter instance,
it is of interest to note that the first term in (3-157) would have the equiv-
alent representation (cf. (3-151) and (3-153)).

a-~~ e -4--r

and similarly for the first terms in (3-166) and (3-167). From consideration
of the expected accuracy of the end results, it appears that the choice of
either deflection function would be satisfactory, but, assuming that the intro-
duction of elastic degrees of freedom is in fact warranted (in comparison with
the "quasi-static" approach), the use of the free vibration mode probably should
be preferred.

3.2.2.7 Breakdown'of Aeroelastic Problem. It is evident from the fore-
going discussion that the problem of calculating the response of an elastic air-
plane to a given input disturbance may be broken down into the following sub-
problems:

(a) the determination of the airframe mass distribution,
including in particular, the total mass and the moments
of inertia;

(b) the determination of the stability derivatives for the
rigid airplane;

(c) the determination of the elastic deflection at any point
on the airframe due to a load applied at any other poinb,
this information being placed in the form of an influence

-i
matrix a or, equivalently, a stiffness matrix 

k = a

(d) the calculation of the aerodynamic pressure distribution over
the airplane (usually only the wing and tail being considered)
due to an arbitrary motion, this information being placed in
the form of the aerodynamic matrix P and, in the lateral
equations, the specification of C and (the

WA Cp T 5r
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determination of the latter might be better associated with
(b) above, since they represent rigid body loads);

(e) the selection of a collocation point or Galerkin formulation
and the specification of an associated set of deflection
points or modes, respectively;

(f) the solution of the resulting equations for a prescribed
input.

In addition, it often may be required to replace or supplement (f) with:

(g) the determination of the solutions to the homogeneous
equations of motion and the construction of the corres-
ponding stability boundaries

The sub-problems (a) and (b), being independent of aeroelastic
effects, will not be treated in any detail herein, although (b) will be
discussed briefly in Chapter V. The structural, sub-problem (c) and the
related problem (e) of determining modes will be discussed in Chapter IV,
while the aerodynamic problem (d) will be taken up in Chapter V. Finally,
the solution of the over-all problem will be discussed in Chapter VIII.

3.3 Autopilot-Aeroelastic Coupling

The foregoing sections are directed principally toward the dynamic
stability problem. In additior, consideration generally must be given to
the possibility of coupling between the autopilot and aeroelastic degrees of
freedom; the resulting motion, is unstable, and is designated as "autopilot
induced flutter" (see e.g., Reference 14).

It should be added that the possibility of autopilot induced flutter
depends on the position of the autopilot sensing elements as well as the rele-
vant frequency ratios. Indeed, it appears that autopilot time constants often
will be comparable to wing or fuselage bending frequencies for large, flexible
aircraft, and the location and type of sensing elements then may be crucial
with respect to the possibility of this type of flutter.

3.3.1 Autopilot Effects. The formulations of Section 3.2.1.3 and
3.2.1.4 include all of the stability derivatives arising in consequence of
direct aerodynamic effects. The installation of an autopilot may signifi-
cantly modify these derivatives and also may introduce new derivatives (in
particular with respect to q), 9, *, and -'), but the new terms may be in-
corporated into the equations of motion in an entirely similar manner.

A preciLse analysis of the disturbed motion of an airplane plus auto-
pilot requires that additional degrees of freedom be provided to describe
the dynamic behavior of the latter; however in dynamic stability analyses it
often may be adequate to characterize the autopilot by a constant time lag,
say t.. Then, assuming this lag to be small compared with 't (as indeed it
must ie if the autopilot is to operate properly), it can be taken into account
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by multiplying each of the autopilot derivatives by the factor I - (tH )? in

the equations of motion (3-15). Strictly speaking, a different t, should be

assigned to each derivative, but, in view of the approximate nature 
of the

correction, this usually would not be warranted. The autopilot time constants

generally may not be neglected when compared with the periods of 
the natural

vibrations of the aircraft as autopilot induced flutter is a serious 
possibility.

Accordingly, the possibility of coupling between the autopilot 
and the elastic

modes (as a result of the response of the autopilot sensing elements 
to the

elastic motion) always must be considered.
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NOMENCLATURE

a W influence matrix

c - relative amplitude of element i with respect to a unit amplitude deflect-ion
at some element p, in the kth mode.

d. - normal coordinate associated with kth mode
K

f - force matrix (aerodynamic and/or inertial)

h a deflections of an elastic structure at element i

i = element number

k = stiffness matrix

1 = unit column matrix

- characteristic length

qr = normalized coordinate in the rth mode

r,k w mode numbers

A a diagonal area matrix

B a characteristic stiffness of an elastic structure

E = flexural modulus

F = Froude number

I a unit square matrix

KA, KB, KC, KAC - Moment of inertia parameters

Ma = Mach number

M a diagonal mass matrix

Mk a generalized mass of kth mode

P - aerodynamic matrix

Qr a generalized force

R - R.eynolds number

T - kinetic energy

U a potential energy
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- angle of flight path with respect to horizon

BW = virtual work done by external forces

= empirical damping ratio of the structure

2ik a slope at element i in the kth mode

w dimensionless operator

a -relative density

V -coefficient of viscosity of air

- time parameter

W - angular frequency

k a natural undamped frequency of kth mode

braces signify a column matrix

underscoring indicates a matrix
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APPENDIX TO CHAPTER III

Axis Systems. The choice of an "Eulerian" system can readily facilitate a
stability analysis, whereas a fixed (in space) earth system may be mandatory
for over-all trajectory work. "Eulerian" coordinates travel along with the
aircraft (origin usually at the c.g.) and permits the instantaneous measure-
ment of linear and angular motions with respect to axes which are fixed at a
desired instant of time (such as just previous to a maneuver).

Axis Systems for Airplanes and Missiles. Several different axis systems have
been used for airplanes and missiles, each suited to a particular type analy-
sis. Some of the more commonly known systems are referred to as:

(i) Eulerian axes,

(ii) Inertial axes,

(iii) Principal axes,

(iv) Body axes,

(v) Wind axes,

(vi) Stability axes,

(vii) Wind tunnel axes,

(viii) Wing chordwise axes,

(ix) Instrument axes,

(x) Radar axes, and

(xi) Elastic axes.

In the airplane stability analyses inertial axes (fixed in space) have
been set aside in preference of an "Eulerian" system. However, an inertial
system translating with the c.g. but with constant orientation is used for the
helicopter. Principal axes are fixed in the aircraft having a special symme-
try which causes the inertial cross-product terms to vanish (i.e., I = I =

xy xz

1 0). Body axes are simply axes which are fixed in the aircraft, i.e., theyyz

move with the aircraft, or equivalently, there is no relative motion between body
axes and the aircraft. Hence principal axes are specialized body axes.

A wind axis system is continually oriented with respect to the relative
wind, and as the aircraft maneuvers, the x (or V) axis continually adjusts its
orientation into the wind. If the y axis is restricted to a principal axis, as
is suggested in the Northrop-BuAer volume, (Reference 4), (i. e., perpendicular
to the x z plane), then the wind x axis cannot leave the x z plane in the lateral
direction to meet the oncoming wind unless a skew system is adopted. Since
orthogonality among axes is highly desirable, the alternative then would be to
allow y to leave the principal axis direction,
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Stability axes are initially oriented with respect to the oncoming wind
during steady flight and then fixed to the aircraft (as body axes) during
maneuvering or disturbed flight. In the wind tunnel, lift and drag forces
are measured with respect to the relative wind and are logically referred to
stability axes. In other words, wind tunnel axes are identical to stability
axes during steady flight. Stability derivatives obtained from subsonic flow
theory are normally calculated with reference to stability axes.

In supersonic flight, it is convenient to use the x axis along the wing
chord. Pressure variations between upper and lower wing surfaces are of prin-
cipal interest wherein the flow streamlines tend to parallel the wing chord.
However, in supersonic flight, the stability x axis will nearly parallel the
wing chord line which permits simplifications of some of the stability deriva-
tives even when referenced to the stability axis system.

Flight test data are obtained from instruments located in the airplane.
If the instrument axes are aligned with the principle axes, then stability
derivatives will be referenced with respect to these axes. Care must be
taken to include the effects due to the location of instruments away from
the c.g. For example, an accelerometer will pick up angular rates and angu-
lar accelerations in addition to other linear and angular velocities, linear
accelerations and the effects of gravity.

A radar axis system specifies the orientation of a target with respect
to the ship through angular displacements of the gimbals upon which the
scanner is mounted. For most problems, the target is considered at some
distance, so that the resolution of these (gimbal) angles can be accomplished
by assuming the radar is mounted at the c.g. and accounting only for angular
displacements.

Throughout the remainder of the airplane and missile analyses, the
stability axis system will be used. There are intermediate steps when other
axes may be used temporarily, but eventually all the stability derivaLives
will be referenced with respect to stability axes. One will find it conven-
ient, for instance, to use a spanwise wing coordinate for determining elastic
modes, the physics of which eventually can be represented as a wing-tip motion
superimposed upon the rigid-body stability y -axis (and x -axis component for
swept wing) at the wing-tip station.

The notation distinguishing the axis systems is given in-subscript form:

xE YE and ZE earth or inertial axes,

XB yB and zB body axes,

XE YW and wind axes,

x y and z stability axes (no subscript),

xWT Y and zWT wind tunnel axes, etc.

Care must be taken not to confuse the above notation with stability deriva-
tives which are represented by capital X, Y, and Z with the associated
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lower case subscripts, e.g.: Xu, Yv, Zw etc. The above could be confused

with the nondimensional stability derivatives, however, the two areas are
likely to be covered at entirely different times.

At this point, the notation used for elastic deflections should be
clarified, particularly for torsion. In partial conformity with flutter
work, the following is used:

h linear deflection of a specified station (wing tip, nose,
etc.) for the first mode of vibration,

h = same for second mode,

Ci = torsional twist at specified station for first torsional
mode, etc.

(The first mode is usually considered as that with the lowest natural frequency,
and higher modes associated with higher frequencies.) The above are the dis-
turbed deflections from the steady-state flight positions, i.e., under static
aeroelastic conditions (see Sections 2.2), the wing tip will. be elastically
deflected an amount h and twisted o , note that qp used for torsion should be

distinguished from c used for the perturbation roll angle of the ship.

In analyzing maneuvers in which the small perturbation theory must
be modified, there are two important effects that should be considered. First

the gravitational or weight vector must be accounted for throughout the maneu-
ver. Second, the aerodynamic effects must be resolved about either a body
axis system, a wind axis system (X axis restrained to plane of symmetry) or some
combination of the two. There are two advantages associated with the body axis.'
First, the inertia terms are independent of altitude and second, the autopilot
sensing gear is oriented with respect to some fixed body axis system. For
these reasons a body axis system is fine for the moment equations. On the
other hand a wind axis system is appropriate for simplifying force equations.
Transform equations are necessary for relating the two sets of axis systems
and tracking the gravitational vector.*

* A. C. Charters, The Linearized Equations of Motion Underlying the Dynamic
Stability o' Aircraft Spinning Projectiles and Symmetrical Missiles,

NACA T.N. 3350
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CHAPTER IV

DETERMINATION OF ELASTIC EFFECTS

4.0 Introduction

The fourth chapter covers the types of elastic vibration that might occur
in aircraft, and surveys the more common methods used in calculating the elas-
tic mode shapes. The most useful techniques are covered in detail so as to
enable one to apply them to a specific problem. The basic energy concepts are
reviewed and relatively simple applications given. From these concepts is
evolved the more useful influence coefficient method and its matrix and tabu-
lar representations. Finally, the elastic concepts and methods are applied to
the transient behavior of an elastic aircraft, excluding unsteady aerodynamic
forces.

4.1 Elastic Concepts

The airplane is a complex structure of considerable flexibility. From
the standpoint of vibrations, however, its various components such as the wing,
fuselage, and tail surfaces, can be considered to be beams of plates capable
of bending and twisting. Thus the oscillations of the entire airplane consist
of bending and twisting of a number of interconnected beams and plates with
possible flapping of attached control surfaces.

In making a vibration analysis of such a complex structure, certain
approximations are sometimes justified for the simplified analysis. For
instance) in determining the motion of the wing, the fuselage, due to its
greater rigidity may be considered to be a rigid cylinder, and the problem
becomes one of finding the free-free modes of this wing-cylinder configuration.

The natural modes of such a configuration are either symmetric or
antisymmetric about the cylinder axis as shown in Figure 4.1. Although

Figure 4-1. Natural Modes
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shown by a single line, the wing bending is generally accompanied by torsion,
and the symmetric modes result in some pitching motion of the fuselage. Both
the symmetric and antisymmetric wing modes may be accompanied by flapping of'

the ailerons.

Then again the motion of the empennage sometimes can be treated quite
independently from that of the wings. In this case, the wings represent a
very large mass concentration which enables the fuselage to be treated as a
cantilever beam fixed at the wing roots. (As a more accurate case, the
fuselage is considered as a free-free beam after having determined the
effective mass of the flexible wings plus engines.) Here the vertical bend-
ing of the fuselage is accompanied by bending of the stabilizers and flapping
of the elevators.

Due to the lack of symmetry about a horizontal plane (e. g., high hori-
zontal tail), the side bending of the fuselage is generally accompanied by
fuselage torsion as well as bending of the stabilizer and fin. The fuselage
torsion will in this case induce rudder motion and antisymmetric flapping of
the elevators. In addition, a rolling motion of the airplane can induce this
same type of rudder and elevator response and, in particular, can excite the
antisymmetric wing bending modes.

4.1.1 Dynamic Representation of Elastic Structures. The elastic (or
spring stiffness) and the inertial (mass and moment of inertia) effects are
of primary importance in the aircraft vibration problem and are covered in
detail in the following pages. The damping (or structural dissipative)
effects are of secondary importance in the presence of induced aerodynamic
damping losses. This fact permits one to omit structural damping effects in
aircraft stability analyses, but not necessarily in the higher frequency
flutter analyses.

4.1.1.1 Elastic Effects. Hookets law, which states that defor-
mations in the elastic range are proportional to load, together with the
principle of superposition, constitute the foundation of all elastic analysis.
The relationship between deformation and load can be formulated in two
different ways. Thus, the displacement at any point i is the sum of the
displacements at that point, independently caused by each of the variously
located forces.

The quantity aij which is the deflection at point i, in a given direction,

due to a unit force at point J, is referred to as the flexibility influence
coefficient.

The second formulation is the reciprocal relation to the above and
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expresses the forces in terms of the displacements by the equation,

(4-1b)

where k.. is the stiffness influence coefficient.

For a system of n forces and displacements, the above equations re-
present a double set of i equations which can conveniently be expressed in the
matrix form

Ii I

Pa h P,

' , ' I(4-2a)

SI I
I I

- , (4-2b)

I
II
I II

I i.

Upon examining (4-1a) or (4-1b) the interpretation of these equations becomes
self-evident. For instance, in (4-2a), the terms aij of each row of the square

matrix are successively multiplied by the corresponding terms p in the adjacent

column matrix to form the sum equal to h.. This operation in matrix algebra is

referred to as premultiplying the column matrix by the square matrix to form
another column matrix.
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On substituting (4-2a) into (4-2b) or vice versa, the reciprocal
relationship between the flexibility matrix and the stiffness matrix is
evident:

-I

This operation which is called inversion states that the stiffness matrix
can be inverted to form the flexibility matrix. It can also be demon-
strated hhat the individual influence coefficients possess a reciprocal
property, aij - aji and kij k ji.

The strain energy of a structure can be expressed in terms of .
the influence coefficients. For a system of forces P. acting through dis-
placements h., the strain energy is equal to the work done by these forces,
which is

This potential energy expression, along with the kinetic and dissipative
energy expressions, is substituted into Lagrange's Equations, Section
3.1 , to obtain the force equations. I

If we substitute for hi or Pi. two forms for the strain
energy become

and

By differentiation it can be shown that

'a .U (4-5a)aPr

rP r  (4-5b)

which demonstrates Castigliano's first and second theorems (Reference
8 - p. 242).
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If the force system applied to the structure is continuous,
integral expressions analogous to (4-1a) and (4-1b) exist between deflection
and force:

J ~ (4~-6a)

P(A) Y) h(I)C
(4-6b)

Here the quantities a (x, and k (x,j ) are the influence functions analo-
gous to the quantities a.. and k..

The strain energy for the structure loaded by the continuous force
is

2 (Xa4-7a)

R20 P(g) g d(4-7b)-of j
(j~)

(4+-7c)
-(

4.1.1.2 Inertial Mass and Moment Effects. The inertial property of

a structure, as established by the mass distribution, is expressed in terms of

its kinetic energy. With the motion specified in terms of translation and ro-

tation about the mass center, the kinetic energy may be written as

or
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4.1.1.3 Structural Damping Effect. In the vibration of any
structure, energy is dissipated in the material itself due to internal
friction. For example, in the spring-mass model of Figure 4-2 this form
of energy dissipation takes place in the spring and is indicated by the
hysteresis loop formed by the plot of the restoring force and the dis-
placement.

Figure 4-2. Spring-Mass Model

It can be shown that this deviation of the restoring force from
the straight line kx can be accounted for by a complex spring force of the

form ke2 b i where the quantity 2b represents a phase angle leading the real
spring force (Reference 26). Thus the differential equation including
structural damping takes the form

rvi + F (4-9)

which differs from that of viscous damping which is proportional to the
velocity. This indicates that the effective spring force has been reduced
from kx to kxCos2b, and that a damping force kxsin2b has been introduced.

When structural damping is small (which is generally the case
for aircraft structures), Myklestad (Reference 26) has shown that the
solution for free vibration reduces to that of viscous damping. Thus b
becomes equal to the damping factor defined as the ratio of the viscous
damping coefficient C to the critical damping coefficient C -2A . For
forced harmonic vibration with small structural damping, theronly difference
from the viscous solution lies in the phase angle which is slightly modified
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For continuous structures, we can consider a space integrated
equation of motion expressed in terms of some specified amplitude. This
can be done in terms of normal modes of the system and generalized coordi-
nates (see 3.3.1) which for any mode results in a similar differential
equation of second order,

'5 5+KS15=Q (4-1o)

where M and K are generalized mass and stiffness. Thus, structural

damping can be accounted for in such cases by replacing the stiffness by
2b i

a complex stiffness 
Ksse

4.1.2 Principal and Normal Modes of Oscillation. Every dynamic
system is associated with the number of principal modes of oscillation
equal to the degrees of freedom of the system. A principal mode of os-
cillation can be defined as a free vibration in which every point in the
system undergoes simple harmonic motion of the same frequency so as to
pass through their respective equilibrium positions simultaneously. The
frequencies of principal mode oscillations are the natural frequencies
of the system. *

Principal modes of oscillation are independent of the amplitude; i. e.,
the mode shape and frequency are not altered with amplitude. Thus, the
amplitude of principal oscillations may be chosen arbitrarily to any con-
venient value. This process of choosing a convenient amplitude scale is
referred to as normalizing, and the principal modes after normalization
are referred to as normal modes.

Normal modes are established differently according to the problem.
For instance the amplitudes Ai may be established by the normalizing

2 =condition 1 A. = 1. On the other hand, for the method of matrix1

iteration, it is more convenient to employ the normalizing condition of
assigning a unit amplitude at a specified point. Another useful normaliz-
ing condition is specified by the equation -17.A. = 1.

I . I

In general a dynamic system can vibrate in any number of different
ways depending on the manner of initiation and excitation. The importance
of the normal mode oscillations lies in- the fact that any such motion can
be represented by the sum of its various normal modes multiplied by time
varying coefficients.

Normal modes possess an orthogonal property which can be expressed

* For bending vibrations of beams the natural frequencies are in general
not integrally related and hence higher mode frequencies are not re-
ferred to as harmonics.
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mathematically as

In this equation the superscripts designate the mode number. In the higher
mode calculation by any iteration method, the orthogonality relation is used
to impose a constraint on the equations to force the computations to converge
to the desired mode.

4.1.3 Coupling of Motion. As stated previously, the various components
of the airplane can be considered to be beams or plates capable of bending
and twisting. In particular the aircraft with long, straight elastic wings
(high aspect ratios) can be analyzed as though the wings were flexible beams.
On the other hand, the elastic delta wings (low aspect ratios) almost of
necessity need to be considered as flexible plates (for which case the in-
fluence method still applies). In many cases, though, an elastic axis as-
sumption can be made which simplifies the problem as is indicated in the
following discussion.

To establish certain concepts applicable to the elastic-axis bending-
torsion vibration~ the plan and cross sectional views of a typical swept

wing are shown in Figure 4-3.

Figure 4-3. Swept Wing Model
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The point e.c. on the sectional view is known as the elastic center, which
has the following properties: (a) When a pure twisting couple is applied
to the section, the cross section rotates about the elastic center. (b)
When a force 'is applied to the elastic center, the cross section translates
without rotation. The advantage of choosing the elastic center as a reference
is that bending and torsion are not elastically coupled; i.e., bending forces
at the elastic center produce only bending displacements h , while pure
torsional moments produce rotation without bending.

A line joining all the elastic centers is known as the elastic axis.
Such a line is in general not straight and its position is somewhat dependent
on the type of loading. In fact, it should be pointed out in satisfying the
conditions for the elastic center at the spanwise station of the load, other
sections may undergo translation and rotation. However, in many cases no
serious error results from assuming the elastic axis to be a straight line
approximating the locus of the elastic centers, and the usefulness of the con-
cept of the elastic axis is upheld in spite of its fictitious nature.

If a pure couple is applied to a wing section, its elastic center does
not move. However, on releasing the couple both bending and rotation often
take place, indicating a coupling due to inertia. This is due to the fact
that inertia forces act through the center of gravity of the section, which in
general does not coincide with the elastic center. Thus, inertia or dynamic
coupling exists between bending and torsion.

LL

Figure 4-4. Wing section
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Neglecting the effects of camber (which can be treated separately),
the center of lift corresponds to the aerodynamic center which is
approximately 25 percent of the chord distance from the leading edge at
subsonic speeds. The elastic center is usually in the neighborhood of
40 percent of the chord distance from the leading edge. It is evident then
that aerodynamic forces produce both bending and twisting and the two types
of motion are said to be aerodynamically coupled. (See figure 4-4).

The type of coupling present for the coordinate system chosen can also
be established by examining the expressions for the kinetic and potential
energies. If cross products of coordinates appear in the expression for the
kinetic energy, the system is said to have dynamic coupling. If cross pro-
ducts of coordinates appear in the expression for the potential energy, the
system is said to have static coupling.

4.1.4 Equations for a Beam in Bending and Torsion The beam simulating
the various components of the airplane is usually nonuniform in mass and
stiffness distribution, and special methods must be devised for its vibra-
tional analysis. In the following section the basic equations for the bending
and twisting of the nonuniform beam are briefly reviewed.

4.1.4.1 Bending. The basic element of a beam in bending is shown in
Figure 4-5. From it the following relationships can beS)

i-( S5)+dV (5)

Figure 4-5. Beam Element

obtained from equilibrium considerations

JV) (4-12a)

V() dt5 (4-12b)

dS
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Substituting (4-12b) and (4-12a), a third relationship is obtained

d M (5 (4-12c)

Using the conventional assumption of small deflections and Hooke's
law, the moment can be expressed in terms of the curvature or deflection,
which enables (4-12c) to be written in the form

- 1 (5 - (--)) (4-13)

4.1.4.2 Torsion. For the twisting of the beam, it is generally
assumed that the simple equation for the prismatic bar applies. In spite
of the limitations imposed on the simple torsion equation, its application
to the nonuniform beam results in good agreement with test results.

N

Figure 4-6. Wing-Section in Torsion

Due to torque T , the twist in an elementary length ds is given by
the equations T 5 (4-)

GT
where GJ is the torsional stiffness per unit length. This equation is often

written in the form

_T T (4-15)
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which is the counterpart of the bending equation (4-13).

4.1.4.3 Bending-Torsion. Equations (4-13) and (4-15) apply to
dynamic problems if inertia terms are included in the loading. Referring
to Figure 3-1, the inertia force for harmonic oscillations is

where m and s = me are the mass and its static moment about the elastic axis
per unit length of the beam. Likewise, the torque increment per unit length
about the elastic axis is the moment of the inertia forces integrated over
the cross section. I =/r2dn is here the mass moment of inertia about the

elastic axis per unit length of the beam.

L f( JL ) (4-17)

Substituting (4-16) and (4-17) into (4-13) and (4-15), respectively,
the differential equations for the coupled bending-torsion oscillation of the
beam become

[E ~ IW (m (s)1 (4-18a)dS5

theL ~[CJ_(S) d(4-8b

The above equations reduce to those of the uncouple bending and torsion when
the static moment A is zero:

d2. E IW 5) 5)8 W Mh (4-19a)

__J_ T(4-19b)d_5LG d5 1

4.2 Methods For Computing Normal Modes

In the case of a nonuniform beam, the analytical solution of the beam
equation is not feasible and some approximate method of numerical computation
must be used. There are several such methods available, the bases of which
will be examined here.
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Six basic methods for computing normal modes of vibration are pre-
sented in the following section. It is appropriate at this point to
summarize the procedures discussed and offer certain comments pertinent
to each.

Rayleigh's energy method: The energy method due to its fundamental
nature must form the basis for many computing methods. The Rayleigh
formulation is one of the simplest and in its original form is applicable
to the determination of the fundamental mode. Its accuracy is dependent
largely on the adequacy of the assumed deflection in representing the
actual vibration mode and the associated boundary conditions. A modifi-
cation of Rayleigh's method enables one to express the potential energy
of the system in terms of the deflection rather than its curvature. This
deflection can be computed by any available procedure including the graph-
ical and the influence coefficient method.

Rayleigh-Ritz extension: The Rayleigh-Ritz extension greatly improves
the accuracy of the energy method at the expense of added mathematical and
numerical work. Here the deflection is assumed as linear combinations of
suitable function,

3
0( : ' t (s) + W(4-20)

and the frequency equation is minimized with respect to the parameter aj.

)= 0 (4-21)

When hi(S) represent functions such as the uniform beam modes which

satisfy the boundary conditions, the accuracy obtained is quite good. It
is evident here that the number of assumed functions must be at least one
greater than that of the order of the mode to be determined. When using
uniform beam modes, the compilation of Young and Felgar, Reference 30,
which presents tabulated normal modes and frequencies for various boundary
conditions, will be found quite useful.

When the Rayleigh-Ritz procedure is expressed in the form

-a (--U) -- o4-2

the result is equivalent to the variational method. By representing h
as the sum of normal vibrational modes and the rigid body modes, the free-
free modes of the airplane can be determined.

The Stodola method: The Stodola method makes use of the inertia loads
to reduce the dynamical problem to a static one. In determining the inertia
load, a deflection must be assumed and improved upo" by successive iteration.
When treated from the differential equation approach, the computation from
the load to deflection requires four integrations which are generally carried
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out in tabular form. For higher mode determination, the lower modes to be
used in the orthogonality relation must be computed with considerable ac-
curacy. This statement applies to any iterative procedure which tends to
converge to the lowest mode present. The Stodola computations can be
carried out much more efficiently by the method of influence coefficients
and matrix iteration.

Holzer method: When an elastic. system can be represented accurately
by lumped torsional parameters, the Holzer method leads to a simple calcu-
lation of the normal modes. It appears then that the major problem here
is that of being able to accurately represent the continuous system in
terms of lumped parameters. Once this representation is adequately made
all of the normal modes of the system are easily determined.

Holzer-Myklestad method: The comments made regarding the Holzer
method also apply to the Holzer-Myklestad method for bending vibrations.
The first step of lumped parameter representation requires experienced
judgment. The computation when expressed in matrix form can be systemati-
cally performed by automatic machines such as the IBM type. The computation I:
by hand operated computers is tedious and requires constant checking by two
individuals carrying out the same computations.

The computation of the higher modes is not dependent on the predeter-
mination of the lower modes. However, due to the fact that the boundary
equations are always in the form of small differences between two large
numbers, the higher mode computations require the carrying of a large
number of significant figures. For the first two modes, six significant
figures will in general be sufficient.

When applied to coupled bending-torsion modes the computations become
lengthy and an automatic machine procedure is almost essential. One time-
saving factor of the Holzer-Myklestad method lies in the fact that both the
symmetric and antisymmetric modes can be deternined from one computation at
the assumed frequency. The inclusion of lumped attachments, such as engines,
tip tanks, bombs and rockets offer no added complication to the Holzer-
Myklestad method. If the attachments are elastically supported, their ef-
fective mass or inertia is used in place of their actual mass or inertia.

Matrix iteration: The method of influence coefficients and matrix
iteration offers a systematic comioutational procedure for vibration analysis.
By the use of flexibility influence coefficients, it is possible to express
the deflection of the system by an integral equation,

The integral equation can be solved by a numerical procedure; however it is
more practical to establish a number of stations over the structure and rep-
resent the above equations as a system of linear algebraic equations which
is then reduced to matrix form. The coefficients of this set of algebraic
equations is then the result of collocation of the integral equations. For
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higher mode analysis, the matrix iteration procedure has the disadvantage
of requiring accurate lower mode data. Also -the symmetric and anti-
symmetric modes of the free-free airplane require the solution of different
matrix equations. The computations, however, can be easily carried out by
a digital computer.

4.2.1 Rayleigh's Energy Method. Rayleights method is based on the
principle of conservation of energy. Thus, for any conservative system the
maximum kinetic energy of the system as it passes through the equilibrium
position must equal the maximum pbtential energy stored in the position of P
maximum amplitude. The method is limited to the calculation of the funda-
mental frequency and requires an assumption of the deflection mode of the
system.

For the uncoupled beam vibration, the energy expressions are

Tm5: (5))2  (4-24a)

Tim dsX = -sf U ) dS (4-24b)E (30) Z(5 1

Equating the two expressions, the frequency equation becomes

S /L S(4-25)

m (s)h(sdCs)

For the torsional vibrations, the counterpart of the above frequency
equation is

L a SJ dS (4-26)

W T S)A 2 0
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Rayleigh showed that good accuracy can be obtained by this procedure
with any reasonable deflection curve. Analytical expressions for the de-
flection, however, are here impractical since m(S) and EI(S) also vary
along the beam. Without an analytical expression, the curvature
2hS
h must be determined by a Stodola iteration technique (Section 4.2.2;

Reference 12).

This difficulty is partially avoided by the following procedure. The
beam is represented by a series of lumped weights W1 , W2, W3  ....... I

and the maximum strain energy is determined from the work done by these
weights, which is,

~~L\-"I~ h1  + VV / h~J (-7

As a first approximation, the static deflection may be used, which can be
computed by a graphical procedure or any other known method. The frequency
is then expressed entirely in terms of the deflection by the equation,

_____ _____ ____(4-28)

4.2.1.1 Rayleigh-Ritz Extension. Rayleigh's method, which
requires one to assume a deflection curve, always leads to a calculated
frequency which is somewhat higher than the fundamental frequency. This
is due to the fact that a vibrating system tends to take a configuration
corresponding to a minimum of potential energy. Since the errors in the
assumed curve represent added restraints or stiffness, the computed fre-
quency is higher than the correct value.

Ritz modified Rayleigh's method by expressing the assumed curve
in terms cf parameters which can be varied to minimize the frequency. With
the parameters in the deflection curve designated by a' s the Ritz method
leads to a set of equations of the form:

__F Els)1-

a 2,EI(s)L- 9 -1Jd5 (4-29)
a Y" r() Z(s) is

which results in a set of simultaneous algebraic equations in a' . The
vanishing of the determinant of this set of equations then leads to the
natural frequencies of the system.
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The Ritz method is essentially a variational method which is

well known in mathematics. It has an advantage over the Rayleigh method
in that the natural frequencies of higher modes can be found. The
accuracy of the higher modes depends, however, on the deflection func-
tions and the number of parameters used. Zahorski (Reference 19) and
Anderson (Reference 22) have obtained good results by using the deflec-
tion modes of the uniform wing.

4.2.2 Stodola Method. The Stodola method (Reference 4, P. 194)
recognizes the fact that the problem of finding the normal modes of
vibration of any structure is merely that of determining the static
deflection of the structure loaded by inertia forces.

For purposes of discussion consider the uncoupled bending vibration
of a beam. Its differential equation from equation (4 -19a) can be
rewritten in the form

which indicates that a loading equal to Tn(S)h(S) will result in a

deflection 1 h(S).

The Stodola computation is started by assuming a deflection carve h(S)
which specifies the loading m(S)h(S). By successive integration which
can be performed numerically, the shear, bending moment, slope and

deflection multitlied by -7., can be computed. At first the computed

deflection shape will differ from the assumed shape; however, by re-
peating the computation with the new deflection obtained from the
previous step, the procedure will eventually converge to the correct
mode shape. At this point the natural frequency can be found from the

2
fact that the ratio of the assumed and computed amplitudes is 2 , since

h
the latter is h

Modes above the fundamental may be determined by the present
method by introducing the orthogonality property of normal modes, see
Section 4.1.2. Equation (4-11). This requires that the first mode
be computed with a reasonable degree of accuracy, after which it must
be used in the relation,

L
where h. without the superscript is the assumed higher mode. Since

the assumed deflection can be considered to be a linear combination
of the normal modes, the above equation is equivalent to setting the
coefficient of the first mode to zero. Thus, when this condition has
been satisfied, the first mode has been eliminated from the assumed
curve which then must converge to the second mode.

When carrying out the numerical integration, the boundary conditions
corresponding to the type of oscillation must be observed. For the free-free
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modes of the airplane, the bending moment and shear at the wing tips must be
zero. An exception to this requirement is found for the case where a tip
tank is used. The shear and bending moment at the wing tips must then equal
that required for the motion of the tip tanks. The boundary conditions at the
airplane center line will depend on whether the motion is symmetric or anti-
symmetric. For the symmetric modes the slope and shear must be zero, whereas
for the antisymmetric modes the deflection and bending moments must be zero.

The Stodola method can be extended to coupled bending-torsion modes by
solving the two equations (4-18a) and (4-18b) numerically (Reference 23). The
boundary conditions at the airplane center line require special considerations
for the swept wing, the discussion of which is presented under the section on
tabular methods (Sectiop 4.2.3).

4.2.3 Tabular Methods

4.2.3.1 Holzer Method. Holzer (Reference 1) introduced one of the
simplest and most widely used methods for the analysis of uncoupled torsional
oscillations. The system to be analyzed is first reduced to an idealized
torsional system consisting of discrete masses of moments of inertia Ii con-
nected by shafts of torsional stiffness K.. i

Assuming such a system to be oscillating in a free-free mode at
frequency w, the external torque necessary to maintain this oscillation is

If the amplitude at some specified point is maintained at unity, this torque,
which can be applied to any point outside of a nodal point, will depend on the
frequency. At the natural frequencies of the system, no external torque is re-
quired to maintain this oscillation and thus a plot of the external torque vs.
frequency will establish the natural frequencies of the system.

The Holzer computation is conveniently carried out in tabular form.
Starting at one end of the system with @l= 1, and with an assumed frequency

2
of w, the inertia torque of the first mass I W must be transmitted by the

i
first shaft which twists by an amount I 2

The amplitude qp2 of the second mass found from the above equation is then used

to determine the inertia torque I2w (2 of the second mass which when added to

that of the first mass results in a torque which must be carried by the second
shaft. Proceeding in this manner, the external torque requirement for any
frequency can be established and plotted.

When the position of a nodal point is known, such as the fuselage
station for the antisymmetric modes of the wing, or for the torsion of the
fuselage tail assembly, the natural frequencies are those frequencies which
result in zero amplitude for this point.
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4.2.3.2 Holzer-Mykiestad Method for Bending Vibrations. Holzer's
method was first extended for beam vibrations by Myklestad (Reference 13) and
Prohl (Reference 14). The beam is here divided into n sections with discrete
masses and stiffness defined by influence coefficients for each section. The
computations are started by choosing a frequency, and the four quantities:
shear, bending moment, slope, and deflection are determined progressively from
one end of the beaui to the other. When the calculated quantities satisfy the
actual boundary conditions, the assumed frequency becomes the natural frequen-
cy of the beam and the calculated deflection its normal mode.

The Holzer-Myklestad method has certain advantages over the itera-
tion procedure in that higher modes can be determined without a knowledge of
the lower modes. Also the symmetric and antisymmetric modes can be determined
from one operation, whereas in the iteration procedure a separate treatment is
necessary, The computational equations can also be expressed in matrix form
for automatic machine computation.

The basis for the Holzer-Myklestad method lies in the fact that in
forced harmonic oscillation the deflection, slope, moment and shear are line-
arly related along the beam. It appears that such problems can be formulated
in many different ways. The development here is a modification of the
Myklestad method (Reference 9) in which the unnecessary algebraic substitu-
tions have been eliminated in the formulation by redefinition of the initial
terms. This results in a clearer insight of the physical concepts which are
retained in the computational equations.

4.2.3.3 Uncoupled Bending Vibrations. For the formulation of the

equations the beam section is chosen as shown in Figure 7 where the

displacement h and the slope hl = ! are shown in their positive sense.
ds

This arrangement is identical to that of Reference 9 except that the ele-
mentary section is drawn with increasing slope and displacement in the
direction of computation to avoid negative signs in the computational equations.

Figure 4-7 Beam Section
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The computation is also directed from right to left so that the order
corresponds to the arrangement of the matrix form of the tabular equations.

In Figure 4-8 a detailed diagram of the elementary section is shown.
A cut is taken just to the left of m. to aid in visualizing the development.

M1+1

Figure 4-8 Elementary Beam-Section

Summing forces and moments, the first two equations of equilibrizii
are obtained. The last two equations are obtained from a geometric con-
figuration where the influence coefficients for the section enter into the
development. These influence coefficients are the slopes and deflections
at station

V. V +,-n. cd4.t (Shear Forces) (4-33a)

++(Moments) (4-33b)

+I~ 6~ +.v.. +MzV6 (Slopes) (4-33c)

+ V + l -MLO (Displacements) (4-33d)
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i + 1 with respect to a tangent at station i, due to unit shear and
moment at station i. It can be shown that this choice of influence
coefficients, which differ from those of Myklestad (Reference 13), lead
to the simplest form of the matrix equation resulting from a tabular pro-
cedure. (Ref. 9)

For an assumed value of w, these equations enable one to calculate
V, M, hl, and h at any point in terms of the corresponding quantities at the
starting point. For instance, for a free-ended beam such as an airplane wing
or fuselage, the computation is started with the following values at the free
end.

\/, =M1 -c
/

k (4-34a)

Progressing to the other end, which may be the center line of the airplane or
the opposite end of the fuselage, the quantities obtained are in the form

= t + 3, (4-34b)

Pin Az+ E3 . , (4-34c)

A 3 + 3 h, (4-34)

h : A4 ± 4 h (4-34e)

where the A's and B's are constants. Specifying the boundary conditions
at n, I is determined, after which all other quantities at n and other
stations become known.

As an example, let n correspond to the center line of the airplane
for the wing vibrations. For the uncoupled bending vibrations, the boundary
conditions are the same for the swept and unswept wings, which are (for the
symmetric and antisymmetric modes):
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(Symmetric Modes)

I 0

n - (4-35a)

vr,= A,. ,BBo 3 (4-35b)
63

(Antisymmetric Modes)

V. = A 4  (4 -36a)

Fl -A 2  -- B4 (4-36b)

64
At the hatural frequencies, V or M must become zero. Thus by

plotting Vn and M vs. cn, the normal mdscrepnigt h ynti
plotingV an M s. , th nomalmodes corresponding to the symmetric

and antisymmetric vibrations of the wing are found.

We will next rearrange the computational equations in a more useful
matrix form. Replacing all terms on the right side of the equation with i + 1
in terms of quantities with subscript i, the rearranged equations take the
form:

V + + (4-37a)

M + M, + V , + . h
LI (4-37b)

6 , +YLA, +6i 2bvt +Nt H r1J (4-37c)

, II' h .J1 + L. + VL, VC + ' + ML O-Ml (4-37d)

WADC TR 55-173 127



This set of equations in matrix form is:

V + o0 yoL W7  V

, I~

(4-38)

It should be noted that only the last column of the square matrix need to be
changed for different values of c. For any frequency the computations can
be carried out progressively from station to station in a matter u-f minutes
by automatic machines which rapidly perform such matrix multiplications.

4.2.3.4 Influence Coefficients. The influence coefficients may be
determined from the actual stiffness curve of the beam by using the area
moment procedure. Referring to the stiffness curve of Figure 4-9 and letting
the ordinates at station i and i + 1 be aEI and (a + b)EI o,

E_ _ _ I EI

Figure 4-9. Stiffness Curve
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where E is an arbitrary reference value, the equations for the influence
0

coefficients become:

b- (4-39a)

L  
Lb, =

(4-39b)

(4-~39d)

If a uniform section of some average stiffness El. is assumed between

stations, the influence coefficients reduce to the simnple relations

b a (4-]40b)
2.EI

(1 .-I4oc)

6 EIC-
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and the matrix equation becomes identical to that suggested by Targoff,
(Reference 17).

4.2.3.5 Coupled Bending-Torsion Vibration. Principal modes of
vibration of airplane wings are actually coupled bending-torsion modes,
for which the uncoupled bending and uncoupled torsion modes represent
approximations. If the computed uncoupled bending and torsion modes
are widely separated along the frequency spectrum, the principal coupled
modes will be predominantly one or the other.

When coupled modes must be computed, the tabular method can be
extended in the following manner. We introduce one additional influence
6oefficient Ci defined as the angle of twist at station i + 1 with respect

to station i, due to a unit torque at station i. If a torsional stiffness
curve GJ(S) is available, C. can be determined from the equation

i

C. (14-41a)

which reduces to the simple expression

J, (4-4ab)

when a uniform section of average stiffness GJ. is assumed between stations.
1
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Figure 4-0 Beanm Section
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Referring to the beam section shown in Figure 4-10, the torsional
angle 9, is chosen positive in the direction of increasing angle of attack.

The inertia torque of the section is obtained by integrating the moment of
the inertia forces over the cross section, which is,

(4-42)

I. is here the mass moment of inertia of the section about the elastic
'

axis, while . = m.e. is the static moment of the mass about the elastic
1 1

axis.

With this notation, the computational equations become,

1t -V + -. 1 - ) (Shear Forces (4-43a)

f1*gt-I € NL: ". V I (Bending Moments)(4 4 3b) V

b a =h. V± ,, b~ + t1 .bML(Slopes) (4-43c)

hc~1  = h + h'!~ ~ a~ (Displacements) (443d)h +, +. h V,, (4-43d) d

Ti+, T4 +LAo 1' (A + , ) (Torque Moments)(4-43e)

TA D+ (Torque Angles (443f)
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Arranged in matrix form, these equations become:

X,,I  , 0 0 C) V,.

'4 I- c ,

II

I
I

to

I• t,

I

odes., o o o of th a

(I--

When partitioned off as indicated, the square sub-matrices along the diagonal
represent the uncoupled bending and torsional equations, whereas the remaining
elements represent coupling terms due to . Again this equation is iden-
tical to that of Targoff (Reference 17) for the coupled bending-torsion vibra-

t ion.

Li.2.3.6 Swept Wings. Of particular interest here are the free-free
modes of the airplane with swept wings. The boundary equations derived for
this general case will then be applicable to the unswept wing when the sweep
angle Ai is made equal to zero.

For the free end corresponding to the wing tip, we have the follow-

ing boundary conditions to start the computation.

' ' (4-45=)
D1.0 h h, 55,173k13
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Here again, the quantities of interest at any station are linearly related and
their numerical value will be of the form.,

A + 13 'I 4-C , (4-46)

The boundary conditions at the center line of the airplane must next
be expressed in terms of the beam quantities at the effective root section of
the wing. The bending moment and the twisting torque at the root section are
in the r and s directions and must first be resolved in the x and y
directions corresponding to the airplane axis as shown in Figure 4-11.

M n Co5A

M 0

My~ So. Sn..&-

T7, Co ,

Figure 4-u1. Airplane Axis System
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It is also necessary to relate the pitching 0 and rolling of the fuse-
lage to the beam bending and twisting angles at the wing root by the following
equations:

(Pitch)' ®_ 04y -oSi %Z Sn '\ (14-47a)

(Rll J).()Sin f\ + k C S(4-47bm)

For the symetric mode there can be no roll and no component of the
vector in the y direction. These conditions are expressed by the equations:

n5,nA t. kh Cos P =0 -- (4 -48a)
(Symmetric Mode)Mln 5, - "7, Cos. -- (4-48b)

which enable one to evaluate h' 1 and T1. The natural frequencies are then

found when the vertical shear V at the airplane center line becomes zero.Zv~vn /

In this equation m0 is half the mass of the fuselage, and e0 is the distance

from the origin of the x,y axis to the fuselage center of gravity.

For the antisynmetric modes, the deflection at the center line of the
airplane must be zero. This implies that the pitch angle E must also be zero,
so that we have the two equations:

n -= 0 (4-5oa)

(Asymmetric Mode)

, Cos A - Sin A :0 (4-5Ob)
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for the determination of h'I and p" The natural frequencies then

correspond to those frequencies for which the rolling moment vanish:

r1× - 1,CosA.-TV)Sn/ (551

4.2.4 Method of Matrix Iteration. The method of matrix iteration is
essentially Stodola's method systematized by influence coefficients and matrix
algebra. The influence coefficients to be used can be defined in many differ-
ent ways; however, the latest trend for the modern airplane is to express the
transverse deflection a.. of any point i on the wing due to a unit transverse

force at any other point j. This viewpoint eliminates the necessity of assuming
an elastic axis which for a complex structure like the delta wing would be a
highly questionable undertaking. The advantage of the plan form type of influ-
ence coefficient is apparent even for the more conventional wing where no
chordwise bending is assumed to take place. The stations in this case can be
numbered consecutively along the two main spars which then enable one to sepa-
rate the bending and torsional modes without reference to the elastic axis.

With a defined as deflection at i due to a unit force at J, the
ij

deflection at any point i due to a force system P. becomes

a = Za P' (4-52)

where h. is the structural deformation in the transverse direction. For a

system vibrating in a normal mode with frequency w, p is replaced by the
I j

inertia force m 0 Z

Figure 4-12. Transverse Deflections

where Z. is the transverse amplitude which in general is different from h

as shown in Figure 4-12.

Oqj V 2,(4-53)
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The set of equations representing the deflection of n such points

is conveniently expressed in the following matrix notation:

7n- 0- 2- 7n -cLt

I 3 (4-54)

where the square matrix [am] is referred to as the dynamic matrix.

In the case of cantilever beanis held stationary at the base,

h = Z and the two columns of the above equation are equal. In the free-

free modes, h can be expressed in terms of Z, and hence in either case

matrix equation to be solved takes the form

~A22. A- ---... ..- A"-

. A , A A.(4-5)

= I i
,I

I I I

I I I

I *1I

L, AKi J L- - - -- -~ L
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The solution of this equation is carried out by an iteration procedure as
follows. First a set of normalized amplitudes Zl, Z2 , Z3, .... is assumed

for the right column, and the indicated matrix multiplication is performed.

This results in a new set of 12 Vs as indicated by the left side of the
W

equation. The resulting mode shape will at first differ from the assumed
curve and the procedure must be repeated after normalizing the new curve.
When the amplitude stabilizes to a definite mode shape, the matrix equation
is satisfied exactly and the natural frequency is established from the ratio
of the assumed and computed amplitudes.

The iteration procedure applied to the matrix equation formulated in
terms of the flexibility influence coefficients will always converge to the
lowest or the fundamental mode of vibration (Reference 10, page 243). If, on
the other hand, the fundamental mode is eliminated from the assumed curve, the
iteration procedure will converge to the next higher mode, (Reference 10,
page 244).

For the elimination of any mode, the principle of orthogonality of normal
modes is utilized. Letting the superscripts designate the mode number, the
orthogonality principle is expressed by the equation,

Or)( ) W -Oy- 'r45

(4-56)

To eliminate the fundamental mode from an assumed curve which we wish
to converge to the second mode, we will express the assumed mode (without
superscript) to be represented by the sum of the normal modes as follows:

(,) - (a) (3)

Zz 4
C, +c C

I ,

(4-57)
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If both sides of this equation are multiplied by the row matrix K Zl, m2Z2---(l)

corresponding to the first mode, every term on the right side except the first
terms will be zero from the orthogonality relationship, and we are left with
the equation

(4-58)

The fundamental mode is eliminated from the assumed curve by letting C1 = 0
which leads to the equation

(.. ) _) Z4

Suppying the identities Z2 = Z2, Z3  Z 3 etc., this set of equations can be

represented in the matrix form

0 1. (4-6o)

L I I I

Since this equation is the result of C1 = 0, the first mode has been swept out

of the assumed curve and the matirix is approximately called -the sweeping matrix.
The constrained matrix equation to be solved is hence

-I Z . 0
, e.5a, mV, a, .. o , , , ,

vz I I I

I I I I I I-
I I I I I I
I I I I g I
S I I ,
II I I I

, I,.
which will converge t'o the second mode.

WADO TB 55-173 139

.3 r- 4•3 if (2' Mu I Rs I(4II-6III )I I



A

For the remaining higher modes, additional sweeping matrices must be
formed from the known modes and introduced into the matrix equation. Due to the
first column of zeros in the sweeping matrix, the constrained dynamic matrix will
contain a colinn of zeros for each sweeping matrix, which reduces the number of
multiplication necessary for the iteration. The convergence and the accuracy of
the higher modes however, will depend greatly on the accuracy of the lower modes
used in the orthogonality relationship.

4.2.4.1 Matrix Representation Including Rigid Body Motion. In the free-
free motion of the airplane, it is necessary to resolve the displacement Z. of

1 ,

any point into its elastic and rigid body components. Letting the point i be
specified by the rectangular coordinates x, y shown in

/I-

Figure 4-13 Rigid Body Motion

Figure 4-13 the rigid body displacement of the point is

O + yt62)

where Z0 @ and , represent respectively the vertical translation of the origin,
pitching about the y axis, and rolling about the x axis. Adding to this the
elastic displacement h, considered positive in the downward direction, the total
displacement in the z direction becomes

Z%-63)

In the matrix equation (4-54) using influence coefficients, the displace-
ments on the right side of the equation arise from the inertia force which is
proportional to the total displacement z, whereas the displacement h on the left
side of the equation represent elastic deformation, which can
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now be expressed in terms of the total displacement Z, and its rigid body
components by' 4-63. Thus, the matrix equations including rigid body motion
must take the form

~- Z~*?(~S~ -yA ,rn, ~~ 1  ~

(A.) 2. Y2O i

I I

I I

The left side of the matrix equation now contains three additional
terms Z0, 6 and , which can be determined from the fact that for the

free-free vibration of the airplane the resultant linear and angular momen-
tums for each wing including half the fuselage must be zero. We therefore
have the following three equations in addition to (4-64a) above

(Vertical M.omentum) Z =0 (4-64b)
L=O

(Angular Momentum about ) (4-61
G=O

where m, I and I are the mass and its mass moments of inertia for half the

fuselage.
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It is evident then that Z, and can now be expressed in terms of Z.

Actually all three equations above are not necessary, since, for the
symmetric modes, there will be no roll and hence 4 = 0 whereas for the anti-
symmetric modes Z and E are set equal to zero.

For the symmetric modes then, the vertical momentum and the angular
momentum about the y axis must equal zero, which steps lead to the equations,

MI~?. 2- 3 (4-65a)

- - - -(14-65b)

Substituting 4-65a and 4-65b into 4 -64a, the left side of the matrix equation
becomes

0 t- a S Mz ;KaK) ~ ~~(i.6

Vrno A" 2--Zo e,

Premultiplying both sides of the equation by the inverse of equation 4-66a, we
obtain the final form of the matrix equation,

A1 A22  A

I (4-66b)

I I

i I
II I

I I; A,3, 3, . . . .

J L

WADC TR 55-173 142



where

" .A,- - - (it 0A- Y r d9"- "

FrtheatiMs ti ne t m ,(4-66c)

I I s

For the antisymmetric modes, Z and must be zero, and the angular
momentum about the x axis must be zero. We then have the equation,

c fs--- - £ - -- Y5 (4-67)

which on substitution results in the matrix equation for the first anti-
symmetric mode,7,1 "

1,, Bi, B -

3i 13 -

where

-

~~~~~,~M& - -m -, - - Z1Gd.f:---

B21 P.--- -- --- - -2- (4-68b)

I
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The procedure for solving either equation, symmetric or anti-
symmetric, is the same, being that of iteration. The equations given for the
sweeping matrix to be used for higher modes also applies here.

4.2.5 Beam Vibrations in a Centrifugal Field. For beams vibrating in a
centrifugal field, such as helicopter rotor blades, the strain energy is in-
creased by the axial tension developed along its length. This additional
strain energy can be determined

Figure 4-14. Rotating Beam
from the work done by the tensile force in moving inward towards the axis of
rotation as the beam deflects.

At any point (see Figure 4-14), the radial motion due to bending is

7t )(Z (4-69)

The work done by the tensil force at this point is

(4-70)
which can be integrated along the length of the beam to establish the total
strain energy due to the centrifugal field.
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The total strain energy due to both bending and rotation is then

Un E (ah d x+ Lf-hrn) (4-72)

For the fundamental frequency, Rayleigh's method of equating the maximum
kinetic and potential energies results in the frequency equation

S 2____ 
(4-73a)

Jnhdx

which can be written in the form (Reference 21):

6L Z 3LA )b &L (k-73b)

Since the first term on the right side of this equation results from
the strain energy of bending, one might be tempted to label (1 as the natural
frequency of bending. It must be remembered however that the bending mode
h(x) is dependent on a , and hence the effect of rotation is implicitly in-
volved in .0 , making it a variable mildly dependent upon .

The quantity C in the second term is frequently referred to as the
rotational constant (known as Horvay's constant), although it too is somewhat
dependent on Ll through h(x). Nevertheless, the above frequency equation
is a convenient one since the variation of m and C due to 0l is slight..0
In fact, Rayleigh's method owes its success to the fact that a first order
error in the deflection curve results in a second order error in the frequency.

Equations of this kind are useful in estimating the fundamental frequency
of rotor blades of the helicopter. In addition, most helicopter rotor blades
are relatively stiff in torsion compared to bending, and its mass center co-
incides closely with the shear center. Thus, torsional modes are generally
insignificant compared to the bending modes.

It should be mentioned here that the Rayleigh-Ritz approach is recommended
for the rotating beam problem. Due to the rather gradual variation of the
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inertial and elastic properties along the rotor blades, the use of the
normal modes of the uniform beam in a non-rotating field results in good
accuracy in the Ritz computation.

4.2.5.1 Holzer-Myklestad Method for the Rotating Beam. The Holzer-
Myklestad approach discussed previously, can be extended to include rotational
effects. It is evident here that only the equilibrium equations are altered

.

C

Figure 4-1 5 Rotating Beam-Element
by the rotation. The four equations from Figure 4-15 are,

II

, -- h. + C 2 j . (I-74b)
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which can be computed in the same manner as in the case of bending vibrations
for non-rotating beams.

Equations for the rotating beam can also be expressed in matrix form
for machine computation. The elements of the matrix equations however are more
involved.

2i

hLLI

It is evident that this equation reduces to that of the non-rotating bending

mode when 11= 0.

4.3 Analysis of Coupled Systems

4.3.1 Generalized Coordinates and Lagrange's Equations. In considering
the most general type of motion that an airplane can have, it will be recalled
that any such motion can be represented in terms of the normal modes of the
system. If the amplitudes of the normal modes of the airplane as a whole are
designated by hr (x, y, z) where the subscript r refers to the mode number,

the displacement } (x, y, z, t) of any point can be expressed in the general
form

th

In this equation 0 determines the extent to which the r mode contribute"
to the motion, andris referred to as the generalized coordinate corresponding
to mode r.
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Lagrange introduced a general form of analysis which enables one to
determine the equations of motion of the system when the energy expressions
of the system are known in terms of the generalized coordinates. The basic
form of Lagrange's equation is

S(- DT DU Q(4-77)

w
where T and U and the kinetic and potential energies and Q = the

generalized force determined from that portion of the work not derivable from
a potential.

Letting m (x, y, z) be the mass associated with the point (x, y, z) the
equation for the kinetic energy takes the form

T rn (X,(4-78)

where the integral is extended over the entire airplane. Since is of
the form

. Z . 2. ,Z 2 ,

the kinetic energy expression reduces to the form

r

where the generalized masses:

The potential energy is the strain energy stored in the structure due

to deformation, and can be written in the form

U~ =k Z9. (4-81)

The elastic coefficients K = K need not be further defined since they canrs sr

be expressed in terms of mass coefficient ard the normal mode frequency as in-
dicated in the following discussion.
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For the normal mode vibration of the system we know that each mode
satisfies an equation of the form

(4 -82a)

It = (4-82b)

so that the stiffness coefficient is related to the mass coefficient by the
equation

Krk Mz Irr 
(4-83)

Since the substitution of T and U into Lagrange's equation for free vibration
results in the equation of the rorm

rs K (4-84)

it is evident thatM, K :0 for rJS . We see then that the require-
ment

Fl~:/ ( , )h(x,, d (K', a) or, (-
rS (4-85)

defines the orthogonality property for the normal modes.

The above discussion indicates that when normal modes are used, the
kinetic and potential energies are given by the equations:

I -- 2. -~ (4-86b)

and the equations of motion under any form of excitation become

~3,
+S5 (4-87)
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where Q may be a function of the generalized coordinates and their deriva-
tives asSwell as time. Thus, the contribution of each normal mode to the
general solution is represented by a second order differential equation.

4.3.1.1 Effective Mass and Inertia Parameters. The fuselage modes
tend to couple with the wing modes for large and flexible airplanes. As an
example, in the symmetrical wing modes of the free-free airplane, vertical
bending of the fuselage and horizontal tail surfaces takes place. This effect
can be taken into account by either one of two methods. The first and most
obvious method is to include the additional degrees of freedom into the
equations of motion by generalized coordinates. The procedure is similar to
the technique used in including the control surface rotation into the analysis
(see Section 4.3.3). In this case it will be necessary to determine the addi-
tional kinetic energy over that of the rigid fuselage motion due to bending of
the fuselage-tail assembly. Lagrangets equation then enables one to determine
the additional terms in the equations of motion.

In the second method, the flexible modes of the fuselage-tail assem-
bly can be taken into account without increasing the degree of freedom of the
equations of motion, by using the effective mass of the fuselage-tail assembly
in place of the rigid mass. The effective mass is here defined as an equiva-
lent rigid mass which if acted upon by the acceleration of the reference
point, results in the sane force as that of the elastic system. Thus, for a
distributed elastic system whose reference point is oscillating with an ampli-
tude of z , as shown in Figure 4-16.

0

1777177117777777 17 1 i, /////7,"r7/7i77777777

I 50
Figure 4-16 Elastic System

the effective mass becomes

D TR 55173 (4-88)
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For a single lumped mass mounted on a spring, the above equation can be
reduced o the simple form,

Mf ei-4 (4-89)

whereas, for the distributed elastic system, the effective mass can be deter-
mined from a Holzer analysis and plotted as a function of the frequency as
shown in Figure 4-17.

eff

Figure 4-17 Variation of meff and I Versus w

e eff eff
It is evident then that the effective mass can be negative as well as positive.
Assuming that the above curve represents the effective mass of the fuselage for
vertical bending, its use in place of the rigid fuselage mass will result in
the analysis of the free-free airplane where the fuselage bending modes are
coupled to the wing modes.

Similar procedure applies equally well to torsional oscillations.
In this case we define the effective inertia as a rigid inertia at a reference
point, which acted upon by the torsional acceleration of the reference point
will result in the same torque as the elastic system of distributed inertias.
The equation for the effective inertia is then,

TT - W___(49

~eff __ .' ZZA (-0
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and its plot as a function of' the frequency will be similar to that of effec-

tive mass. Here again, for a single flexibly supported mass, the equation
reduces to the form,

(4-91)

Equations 4-89 and 4-91 for the single mass can be conveniently used for
spring mounted engines and other attachments. It should be notea that in the
normal mode analysis of the wing the engine mass to be used should be its
effective mass for the frequency under consideration.

4.3.1.2 Transient Response Parameters. In the preceding section it
was shown that the transient response of any structure, when represented in
terms of its normal modes, leads to a system of second order differential
equations (Equation 4-87) which can be determined independently for each mode.
Such independent solutions may then be summed as in equation 4-76 for the tran-
sient response of the system.

Consider now a force P (x, y, t) applied to the structure. The
generalized force Q is then determined from the virtual work 5W correspond-
ing to a virtual displacement 5qs. The expression for the generalized
force becomes,

Qd (A 7 f~y t h ( Y) j~X (4-92) F
6C1 5 J

and Equation 12 takes the form,

sS(A, Y) x y (4-93)

where the generalized mass M is given by the equation,
s

Y)JMAY (4-94)

In cases where the load p (x, y, t) is expressible in the form,

Equation 4-93 may be written as,

q U) 2 C5 (4-96)
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where,

/ (4-97)

is the participation factor which determines the extent to which modes con-
tribute to the general motion. The solution of Equation 4-96 can then be
written in the following integral form,

CS t

where the quantity,

is the dynamic load factor. The significance of this term is evident when one
compares the static and dynamic solutions both expressed in terms of normal
modes. The dynamic load factor will then be the ratio of the dynamic to the
static terms for each mode.

4.3.2 Coupled Mode Analysis. Uncoupled modes are frequently used for

the coupled mode analysis of the airplane. As an example, we consider the
coupling of the wing bending, wing torsion and the rigid body translation,
roll, or pitch of the airplane. We can let the uncoupled modes be expressed
as:

rigid body motion H H&,) (4-100)

uncoupled wing bending h4, .(S) 3)- %(s)--- - - -(4-101)

uncoupled wing torsion $ -(S) 2 ) - - - (4-102)
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Figure 4-18. Wing Section

For pure translation of the rigid body, H xy) = 1, whereas for
the roll or pitch H(x,y) = y or x respectively. H then is the generalized
coordinate for the rigid body translation or rotation. The other terms
and 4 are the generalized coordinates for the bending and torsion of the
wing with normal modes represented by h(S) and t(S). Although the modes
of the coupled oscillations differ from those of the uncoupled oscillations,
they may be accurately represented when sufficient number of modes are in-
cluded in the analysis.

The displacement of the center of gravity of the wing section at
x, y (see Figure 4-18) can now be expressed in terms of the uncoupled
components as

7=H, h i-eP (4-103)

Expressions for the kinetic and potential energies then become

IA0m (4-04)

I 2-f 2
LL
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where some of the cross products disappear due to orthogonality. Making the

following substitutions:

Hi,(A, yJHMay =ry

M h=f a (S)d mNrne-H(, (S ,,

2. 2.

Khh =whhm h Ktm Mt¢ (P

the terms in Lagrange's equation become,

I..,

19 T0 t K + h j 4-07
4

A -R '173--5 -5
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(CO P k (4-1o9)

wpt~ C(4'-1io)

At this point it is possible to write down the frequency equation for an anal-
ysis including any number of modes. The following equation is for body motion
coupled with the first bending and first torsion modes.

W2 M r'1 2

22

(4-i1ll)

It is apparent here that the four lower right terms of this determinant
represent the coupled 2wing bending and torsion modes, whereas the other four
terms not including W MHH, account for the coupling of the wing motions to the

rigid body motion.

In considering the modes of vibration of an aircraft, it is usually the
case that coupling exists between wing deflection (bending-torsion) and body
deflection. Several typical cases are indicated in the following sequence of
figures, each of which can be considered as an over-all mode of vibration.
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Figure 4-19. Symmetrical Bending Mode
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Figure 4~-20. Symmetrical Bending Mode
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Figure 4-21. Asymmetrical Chordwise Bending Mode
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Of course, higher wing and body coupling may occur tending to complicate
the analysis a great deal more. In all cases wing torsion associated with
wing bending, as previously discussed, introduces more distinct modes. For
instance Figure 4-19 may vibrate with either positive or negative wing
torsion as the wing bends up (positive torsion means leading edge moves faster
than bending elastic axis at the same wing station).

When the over-all mode shapes are known (either from theory or vibration
tests), then kinetic and potential energy exressions can be derived knowing
the mass, inertial and stiffness distributions. The generalized mass, inertia
and spring terms (for each over-all mode) are then determined by the energy
averaging methods introduced in Section 3.3 for the simple wing mode case.

4.3.3 Coupling of Control Surfaces. Control surface rotation can be
included in the vibration analysis by considering the additional kinetic and
potential energies associated with such motion. Since the bending-torsion
vibration of the wing structure is generally computed with the control surface
locked to it, the additional terms in Lagrange ts equations are determined by
evaluating the total kinetic energy of the deflected control surface and sub-
tracting from this the kinetic energy of the control surface locked to the
wing structure.

Figure 4-22. Wing and Control Surface Section.

WADC TR 55-173 160



4

Referring to Figure 4-22, and letting m5 and I5 be the control

surface mass and its mass moment of inertia about the hinge line, the addi-
tional kinetic energy due to 5 is

Using the notation of Section 4.3.2,

H -H (Y,.Y) (4-113)

h: .ILk s (4-1-4)
4q

(4-1.15)
4

we add the control surface coordinate

~=6~s(S)(4-116)

If the control surface takes no fur.ther twisting beyond that due to wing
twisting, then b(S) 1 1; however it is convenient to detail the term B(S) to
identify the various additional integrals in the equations of motion.

Rewriting the kinetic energy equation in terms of these quantities, we
have,

- H ()Y)S(S)edm& - W h (s)g(S) ed,,

L4

(4-117)
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The stiffness of the control surface to rotation involves the control

mechanism as well as the twisting and bending of the control surface induced

by v(S) and h(S). Lumping these into a single stiffness coefficient, the

potential energy associated with B is

T Ss S2 2 65 S (4-118)

Introducing the notation,

M M. -fH (A,)y) g(5) e, rV 6

r'lSU -f ()s) e d n

the additional terms in Lagrangets equations are:

d 1;9T
Ci H (4-i19)

-)dk h .= M (4-120)

L(6T r1L + 1 M9ZI+, M1 (4-122)

U L (4-123)
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Thus, the frequency equation for the analysis where only the first modes are
included takes the form, I

a°l~t 2. 2
MR"MW 2 2 M1Vih

W. Mhh, _L.)-Jh, h, )NI, ' M , ' £ l,

Lorl@.(D. h,S ( O zN) (.LO)

This equation is identical to Equation 1f-lll of Section h.3.2 except for the
additional terms appearing in the last row and column.

The procedure presented here is quite general and can be applied equally
well to the fuselage-tail assembly. The inclusion of the fuselage-tail modes
would merely introduce additional terms to the above determinant. With addi-

tion of higher modes, the order of the above determinant will be increased.
However, since h h ' h h(.s and q =i Zpi P~ are the approximations

to the coupled modes, it is possible to replace the summation by the coupled

mod itelf i~., c  c(S)and c c (s), which has the advantage of
keeping the order of the determinant to a minimum.

4.3.k Coupling of Auxiliary Equipment. Airplane structures are fre-
quently burdened by the addition of auxiliary equipment such as tip tanks and
rockets. In such cases the question often arises as to the change in natural
frequency due to the added mass. Such questions can be answered by carrying
out a new set of computations including the additional equipment. It is pos-
sible however to avoid a complete recalculation by noting certain pertinent
facts regarding the frequency equation of' any structure.

Consider for simplicity a rigidly supported structure. We will consider
the motion of the system to be harmonic and express the deflections in terms
of the influence coefficients.

L. ~ IC .. ~ (4-125)
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The frequency equation resulting from the determinant of these equations
takes the form,

-1 ), I
W2. + 0 (4-126)

7Z_

where the coefficient of the second highest term is now of interest. We
recall here the fact that when an algebraic equation is arranged in the order
of descending powers with the coefficient of the first term equal to unity,
the coefficient of the second highest term must be equal to the sum of the
roots of the equation. Letting , w2-y, tc3, etc. be the natural frequencies
of the system, corresponding to te roots of the equation, we can write the
equation,

.,.. +.j. .+ ,
'A O3 (4-127)

Since ay, cu , w , etc. are increasing values, the terms on the left side of
this equation ae diminishing quantities. For instance, for the uniform can-
tilever beam, these magnitudes are in the proportion

(3s2)± +  t (4-128)

It is evident here that no serious error will result in assuming the left side
of the equation to be - in which case we arrive at Dunkerley's equation
(Reference 10, page 172.

_1_ =a,, -*a zd 2 M92  4Z33 +Z3  ----CaJ -

(4-129)
.4- 2. "

In arriving at the last form of the equation, it is noted that a..

is the deflection at i due to a unit force at i, which implies that a.. is

the reciprocal of the stiffness at the point i. Thus, a. = andzi k.

alimi 7 = m. . 1

k. 21 oI..

To use Dunkerley's equation to answer the question of the effect of the
added mass on the natural frequency, we will assume that the fundamental fre-
quency of the original structure is represented by the equation,

_ ,, --- +
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We next attach to the structure an additional mass M at some point, say j.
Then the new frequency equation becomes

1 +t a (- M) -)

-_6 'j%
- (A2~(4-131)

Thus, the natural frequency cq has been lowered to a. by the addition of

the mass M. If several masses are added at points i, j, r etc., the above
procedure results in the equation,

I LAj. ~'1 (4-132)

Such equations are applicable to torsional oscillations as well as bending
oscillations. For the torsional oscillations the counterpart of the above
equation is

+ - -;'t t I(4-133)

where Ki is the torsional stiffness at point i, or the reciprocal of the

torsional influence coefficient.
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NOMENCLATURE

aij, a(x,S), avi am, bvi b = Flexibility influence coefficients

ci  a Torsional flexibility influence coefficient

e w Base (2.718 ---) or eccentricity

e.a. = Elastic axis = locus of elastic centers along wing

e. = Distance c.g. of section i is from elastic axis1

eo a Distance from origin of xy axis to fuselage c.g.

e 1 a Distance from control surface hinge line to control surface center
of gravity

h = Displacement at point i
i

h(x) = Bending mode shape

k - Stiffness influence coefficient
ii

1. = Distance between stations i and i + 1

mi a Mass of section i

p (s) = Loading per unit distance

qr = Generalized coordinates

r = Distance, or mode number

r I  = Distance from elastic center to control surface hinge line

s = Distance along beam (or wing)

z = Static mass moment about the elastic axis per unit length of beam

x = Axis along fuselage center line

y = Axis perpendicular to center line
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A

Ai = Amplitude associated with i th normal code

B = Deflection constant

C = Rotational Constant (Horvay's Constant)

C = Participation factors

C cr = Critical Damping

E = Young's modulus for beam material, lbs/ft
2

F = Force

GJ = Torsional stiffness per unit length, lb ft2

= Generalized coordinate describing rigid body translation or rotation

I = Mass Moment of inertia about the elastic axis

I8 = Control surface inertia about hinge line

I. = Moment of inertia of section i

K. = Torsional stiffness at point i1

K = Generalized stiffness
ss

L a Lift

M(s) = Bending moment at point s along the beam (as wing)

Meff = Effective Mass

M = Control surface mass

M = Generalized massss

Pi = Force

Qs = Generalized force

T = Kinetic Energy or Torque

U a Potential Energy

V(s) - Shear

V = Vertical shear at airplane center linez

W = Work

Wi  a Lumped Weights

Zi = Normalized amplitudes
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i Parameter used in equation describing deflection curve

B = Control surface deflection angle

- Pitching angle of fuselage

= Sweep angle of the elastic axis

a Angular velocity

co Circular frequency

= -Roll angle of fuselage

p= Torsional angle of station

= Radial distance to rotational vector, or general spanwise coordinate

( )l = Slope or first derivative
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CHAPTER V

DETERMINATION OF AERODYNAMIC EFFECTS

5.0 Introduction

In the previous chapters the basic concepts of the aeroelastic analysis
of aircraft stability and control have been discussed, and the equations of
motion of a flexible aircraft have been derived. In these equations it is
assumed that the aerodynamic forces acting on a moving and vibrating aircraft
may be expressed by the so-called "first-order" theory, which will now be
discussed.

In the most general analysis it is necessary to determine the aerodynamic
forces corresponding to an arbitrary motion (distortion) of the airplane.
This general aerodynamic problem is discussed in Section 5.2. An attempt
will be made to put the aerodynamic force evaluations on the foundation of
the modern theory of nonstationary airfoils. This theory is ordinarily
used in the flutter andlysis, and in applying it to the stability and control

problems certain simplification is possible in virtue of the smallness of
the "reduced frequency" that characterizes dynamic stability problems. In
Section 5.2 the basic concepts and general equations are developed. However,
solutions are given in the form of integrals which are not necessarily easy
to evaluate. Much effort has been spent in the past to accumulate and tabu-
late special solutions of practical interest to aeroelastic analyses. A
summary of known results and a guide to the literature is therefore of
interest and value to the analyst. Such a summary is given in Section 5.3
for two-dimensional flow and in Section 5.4 for finite wings. Tables showing
a comparison of notations used in the most important references are given.

In Section 5.5, a corresponding summary of the known resuits on the
indicial responses of an airfoil to a step function input is given. These
results are of prime importance to problems of gust response, maneuver, or
controlled operations. They are also of importance in solving the dynamic
problems by the Laplace transformation method.

In Section 5.6, the transformation of stability derivatives in several
systems of moving coordinates are examined.

The results of Sections 5.2 - 5.6 are of general applicability, suitable
for either the modal approach or the collocation approach as outlined in
Chapter III. In Section 5.7, however, the "modified derivatives," to be used
in a simplified analysis, are discussed. This is explained as follows:

The analysis of an elastic airplane is usually quite complicated.
Simplified approaches are therefore valuable. One of the simplified methods,
the so-called "method of modified derivatives," includes the elastic dis-
tortion effect in the stability derivatives of a rigid airplane. In this
approach the number of dependent variables ir the same as that of a rigid
airplane. The orders of the differential ecuations remain unchanged, and.
the stability determinants are of the same order. Only the stability deriva-
tives are modified. This method is based on the assumption that the elastic
distortions occur very slowly in relation to the lowest relevant natural
frequency of structural oscillation. It is inapplicable when the forces
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and moments proportional to the distortional velocities and accelerations
cease to be negligible. It is therefore appropriate to call this method
"quasi-static," as was done in Section 3.2.2.3.

Whenever applicable, the method of modified derivatives is to be
recommended because it possesses the great merit of simplicity. The validity
of this simplified approach can be checked as soon as a solution is obtained.
if it is found that the basic assumption of slow oscillation is violated,
further corrections can be made subsequently on the basis of more precise
equations of greater complexity.

Although the modification of the stability derivatives due to elastic
distortion is not merely an aerodynamic problem, but is an aeroelastic pro-
blem, it will nevertheless be discussed in this chapter. When one thinks of
the stability and control equations in the familiar form applicable to a rigid
airplane, it is quite appropriate to include the discussion of the modified
derivatives under the present chapter heading.

5.1 Summary

The materials of the present chapter caa be used in the following manner:
A quick review of the general concepts as well as specific results can be
obtained from Sections 5.2 - 5.6. The stability derivatives obtai. ed from
the first order unsteady flow theory can be used to replace the conventional
quasi-stationary derivatives. The modified derivatives for elastic distor-
tion can be obtained as in Section 5.7. If the solution of the modified-de-
rivatives approach shows violation of conditions presumed for this approach,
(Section 5.7.3), a more extensive analysis based either on the modal approach
or on the collocation approach must be made.

It suffices in general in the airplane dynamics to use the first order
theory; but occasionally it may be necessary to consider higher order terms
in reduced frequency. In such an event the information summarized in Sections
5.3, 5.4 may be used.

The general formulas in Section 5.2 may be used as a basis to determine
stability derivatives for those modes of elastic distortions or wing plan-
forms for which tabulated results are not known.

The evaluation of the rigid body stability derivatives will not be
considered in any detail, except insofar as the conventional results may be
modified by unsteady flow and elastic effects. Empirical corrections for
wing-fuselage interference, power effect, etc., are of great importance,
particularly in relation to the lateral derivatives. It is generally advis-
able to use experimental data wherever possible, relying on purely theoretical
calculations only insofar as necessary. Considerable experimental information
on unsteady-flow effects exists. See References 22, 95, 146 and 147. A biblio-
graphy and review of experimental results can be found in Chapter 15 of Reference
58 and Chapter 13 of Reference 59. Unfortunately, there is still insufficient
experience on incorporating these experimental results in the dynamic stability
analysis.

5.1.1 Significanne of the Unsteady Flow Effect. Incorporation of the unsteady
flow theory in the stability and concrol analysis requires some additional
effort in comparison with the labor required in the conventional quasi-station-
ary analysis. To help judge whether such an elaboration is necessary in each
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specific case, the basic reason will be outlined below.

The "quasi-stationary" theory assumes that the aerodynamic loads are
linearly dependent on the angular positions and the velocities of the airl-
foil producing them. The forces and moments are predicted at any instant
of the motion as if the airfoil were in steady motion -under the conditions
pertaining to that instant. Certain aerodynamic lags are neglected in this
procedure. Because of the aerodynamic lag, it becomes evident that when rapid
maneuvers are considered, the aerodynamic derivatives can no longer be con-
sidered constant, but must be variable functions of the acceleration.

In contrast to the "quasi-steady" theory, the unsteady aerodynamic
theory accounts for the time lag between the growth of circulation and the
motion generating it by considering the influence of the trailing and shed
vortices in the wake of the wing. The result, however, is a tremendous
complication in the analysis. For stability and control analyses of an
aircraft, howevel it often happens that the acceleration of the aircraft
motion is not large, or, in case of sinusoidal oscillation, the frequency
is small. Important simplifications can be obtained in such cases. A
proper dimensionless parameter for frequency as a measure of the unsteady
aerodynamic effect is the reduced frequency, defined as*

k c

where w is the circular frequency in radians per second, S is a charac-
teristic length, often taken as the mean aerodynamic semi-chord length,
and U is the true airspeed of the aircraft. If the reduced frequency k
is small, say, of order 0.1 or less, the unsteady aerodynamic forces in
response to a specific motion may be expanded in series of k . When all
terms of higher order of smallness than k 'are neglected, the result iscalled the "first-order" theory. In stability and control analysis, the

smallness of k often permits one to use the first-order theory instead of
the full unsteady flow theory.

Compared with the frequency, damping, and transient-response calcu-
lations based on the quasi-steady aerodynamic coefficients, the nonsteady
flow considerations seem to show, in some specific instances, considerable
influence upon the control surface motion, whereas their effect on the air-
plane motion as a whole is not large. The unsteady flow effect should be
considered, therefore, in studying the control surface motions, and in the
design of automatic control of aircraft which operates through the control
surfaces, whose dynamic transfer functions must be known in order to avoid
instabilities due to coupling between the control system and the aircraft.

To have some idea about the difference in analysis based on quasi-
stationary and unsteady flow theory, the stability determinants may be
compared. With the usual assumptions of rigid-body airplane dynamics,the
stick-free longitudinal stability determinants for norizontal flight are,

(neglecting the u -equation and writing X for t t~

*A sinusoidal oscillation can be represented by a time factor e , where w isicot
real and positive. A damped oscillation can be represented by e with a)
a complex number. The real part of cz is then the frequency, the imaginary
part, the damping factor. Similarly k may be complex, with its imaginary
part representing reduced damping factor. The first order theory holds
when the absolute value of k is small.
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(a) First-order-unsteady-flow theory:

-~ +

(b) Quasi-stationary theory:

a.w

A comparison of the above expressions shows clearly that the additional
labor required in adopting the first order theory lies in the evaluation
of a number of stability derivatives, and that the labor required in
solving the stability determinantal equation or any response problem
remains approximately the same for both theories.

It has been shown (Ref. 7 of Chapter III), by an order of magnitude
analysis, that for large values of the density ratio, p = /pSc, many
unsteady-flow derivatives have negligible effect on the motion of the air-
craft. Thus in the above equations, )W6*, )Z/6, I/ may be neglected.

Scme cunclusions regarding the importance of aerodynamic lag may be drawn
on the basis of special numerical examples. Weissinger (Ref. 145), Goland (Ref.
62)., Smilg (Ref.64) Goland, Luke and Sacks (Ref. 69), Statler (Refs. 117,118) and

Walkowicz (Ref. 65) have given various examples to the effects of unsteady
flow and elastic distortion to the dynamic characteristics of the airplane.
Exhaustive treatment of the problem with many examples is also given by
Ashley, Zartarian, and Neilsou (Ref. 22), and Goland, Luke, Hager (Ref. 70).
A brief survey of their conclusions is presented in Appendix 5C.

5.2 Survey of Basic Concepts and Analytical Results in the First Order Un-
steady Flow Theory

5.2.1 Aerodynamic Concepts

5.2.1.1 Linearized Aerodynamic Theory. The linearized aerodynamic theory
is based on the hypotheses that all velocity and pressure disturbances
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are so small compared with the flight velocity and free stream pressure,
respectively, that only linear terms in these disturbances need be retained.
In consequence of this approximation, the various aerodynamic forces on a
body are linear in the displacements or velocities of this body; e.g., the
lift on a wing is linear with respect to angle of attack. The basic equations
of fluid flow arp nonlinear, so it is necessary to resort to linearized
approximations of these equations in order to make any appreciable progress
in the calculation of aerodynamic forces. Moreover, the design of the most
important lifting surfaces (wing, horizontal tail, fin) for low drag requires
that velocity and pressure disturbances be kept small, thereby favoring the
linearized theory.*

Linearized aerodynamic theory generally must be distinguished from small
perturbation theory; in the latter the aerodynamic forces due to disturbed
motion are calculated by conqidering small perturbations about the undisturbed
flow. For example, the values of C , C , etc. used in the dynamic

stability equations need not be calculated on the basis on linearized theory
lut can be taken from nonlinear portions of the approximate curves for steady
flight in the equilibrium configuration. Linearized theory however, will be
adopted throughout this chapter.

The approximations implicit in linearized theory generally are acceptable
in dynamic stability studies. It should be remarked, however, that linearized
theory cannot be expected to be satisfactory in analyzing stalled flight or
such violent maneuvers as the spin.

>.2.1.2 Quasi-stationary and First Order Theories. The linearized approx-
imations to aerodynamic forces in dynamic stability studies usually are expand-
ed in the disturbance coordinates and their time derivatives with only the
first one or two terms retained as in (3-16) and (3-17). Thus, e.g., the
lift coefficient due to angle of attack may be expanded according to:

CLC ((s-i)

It then is argued that the higher terms in the expansion are negligible for
the slow rates of change that occur in the rigid body motions of the airplane.
Alternatively, if the motion is regarded as harmonic, it may be established
that the ntth term in the expansion (5-1) is of the order of kn (cf., however,
(5-21) and discussions following (5-166)), where k is the reduced frequency

'A L :/J (5-2)

comprising the angular frequency w, a characteristic length e (usually
chosen as the wing semi-chord in defining k), and U the flight velocity.

* The pressure disturbances for a body of given dimensions increase with

Mach number, however, so that the linearized theory usually breaks down
in the hypersonic regime.
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The retention of only the first term in expansions of the type (5-1) con-
stitutes the quasi-stationary (or quasi-steady) approximation, in which the
air forces are calculated as if the instantaneous flow pattern were steady.
In terms of an expansion in the reduced frequency k , the quasi-stationary
approximation is not completely consistent, since it neglects terms of first
order in frequency in the equations of flow (e.g., the terms /Ot in
Bernoulli's equations, and for compressible flow, the term 4/k in the
equation of continuity).

That approximation retaLning all terms that are first order in k will
be designated as first order theory, in contrast to quasi-stationary. It
should be emphasized that the distinction between the quasi-stationary and
first order theories is based on the reduced frequency k , whereas the
approximations permitted in the dynamic stability equations for a rigid air-
plane depend primarily on the relative density factor p . Thus, it may be
established* by an order analysis in u-1 that the only unsteady flow term
that need be included in the equations of longitudinal stability for large
)is c

C1

The foregoing discussion now will be illustrated in more explicit fashion
by discussing the calculation of the moment on an airplane due to an angular
velocity q , i.e., the pitch damping derivative. There are two distinct
situations that are-of practical importance viz., flight at constant incidence
along a curved flight path (e.g., a dive pullout), as shown in Figure 5-1,
and flight at varying incidence along a straight flight path (as in the dynam-
ic stability problem), as shown in Figure 5-2. In the first case the flow
is truly steady, and the aerodynamic effect of the flight path curvature is
described. simply by introducing an additional incidence (q4/U) at the tail
aerodynamic center, where It is the distance of this center aft of the c.g.,
plus an effective camber due to the curved flow, plus similar effects at the
wing; however, only the change of tail incidence is of appreciable importance
in conventional configurations. It has long been realized that the stability
derivative (Cm)so oltained is not directly applicaole to the calculation

q

of the damping moment on an airplane performing a pitching oscillation as it
flies along a straight path, and it is necessary to add the derivative Cmn

to account for changing wing incidence. It usually is assumed that C isma

due entirely to the effect of the wake of the upstream (wing) surface on
the downstream (tail) surface** and is given by

Im =cnc(T11W (5-3)

where E is the induced downwash at the downstream surface due to an angle
of attack ct of the upstream surface. The total damping derivative for pitch-
ing oscillations (with respect to inertial, not body axes) then is given by

* Reference 8, Page 2-59

** In most of the following, the main lifting surface, designated as the wing,
is assumed to be forward of the horizontal stabilizer, designated as a
tail. However, these positions may be reversed, as in the canard configuration.
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Figure 5-1. An Airfoil Executing a Steady Pullout at an
Angular Velocity q about the center 0.

Figure 5-2. An Airfoil Flying Along a Straight Path with
Variable Angle of Attack a a 0 cos at.
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CrY + Cr

The derivative C , as given by (5-3), arises essentially in consequence

of unsteady flow effects, in contrast to C , which is based entirely on
q

steady flow concepts; nevertheless, as given by (5-3), C fails to account
U.

for all terms that contribute to total damping in consequence of being first
order in frequency. Thus, while it takes into account the time lag of the
waive at the tail due to wing incidence, no allowance is made for the effect
of this lag on the wing itself, nor is the downwash at the tail due to
effective camber of the wing (associated with the angular velocity q) taken
into account. In addition, other terms of first order in frequency may arise,
and the consistency of the end result can be best insured by a systematic
reduction of the results for unsteady flow, retaining all terms of first
order in the reduced frequency k .

It is not to be inferred that all terms of first order in frequency are
necessarily of the same importance, but this can be determined only at a later

time. Thus, C for a wing alone is relatively unimportant compared with
m.

C at low speeds; but in the transonic regime C may exceed C (for wing
m m. m
q a q

alone)in magnitude and be of oppositbe sign. Moreover, in dealing with
less conventional configurations, such as tailless aircraft, unsteady flow
terms may prove of the greatest importance. In particular, if C were toma
cancel Cm  in a flying wing design, the results might well be catastrophic.

m

Before undertaking a detailed study of first order, unsteady-flow re-
sults, it is instructive to indicate the structure of the results for the
particular case of damping in pitch. The aerodynamic force acting on a wing
depends on the normal velocity distribution over the wing, herein designated
as the (local) downwash, and the free stream velocity, the former being
assumed small compared with the latter. In the case of a pitching oscillation
of amplitude a1 about a transverse axis at x = a, as shown in Figure 5-3,

the downwash may be placed in the form

., t R '74(YO(5-4)
70= CU + U . (0-X)(5-5)

The first term in (5-5), Ual represents the effect of incidence and the

second, iu al(a-x), the effective camber due to the angular velocity (which

has the instantaneous value q = -w i sin wt), the complex exponential time

dependence being introduced in the usual manner.
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Figure 5-3. A Wing Executing a Pitching Oscillation about
x = a;. the distribution of downwash at a
particular instant is depicted by the arrows.

The aerodynamic moment (about x = a) due to this downwash may be posed
in the form

]) " (5-7)

where W/& is the static moment derivative, )M/ (ql/U) the damping
moment derivative calculated from equivalent camber m cz(a-x), 3 (di/U)
the unsteady flow contribution due to incidence, and k the reduced frequency
defined by (5-2). It should be emphasized that 6m/ (6,/u) arises out of the
first order frequency effects in the equations of fluid flow in response to
the zero order term Ua in the downwash, whereas 6M/ (qj /U) arises out of the

zero order terms in the equations of flow in response to the firzt order term

im a(x-a) in the downwash. This split-up is, to some extent, artificial, but

it has the merit of clearly separating out the quasi-stationary and aero-
dynamic lag contributions to the total first order (in frequency) result.

5.2.1.3 Aerodynamic Effects of Various Motions. The basic aerodynamic

problem (in the present context) is to establish the pressure distribution,

usually over a thin lifting surface, due to a prescribed motion. The direct

effects on the flow resulting from this motion may be of the following types:

a. a change in local incidence;

b. a change in local flight direction;

c. a change in local flight speed;

d. a reorientation of the trailing vortex pattern behind a wing; and

e. a change in the suction forces at the edges of a lifting surface.

Of the foregoing, effects (a) and (b) are the most important and also the most
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amenable to reliable, theoretical calculations. Effect (c)-viz., change in
local flight speed, is more difficult to treat theoretically, especially in
compressible flow; fortunately, it is of rather less importance, and it gen-
erally is adequate to deal with it on the basis of quasi-stationary theory.
Reliable theoretical treatments of effects (d) and (e) are not feasible ( at
the present time), but they are of relatively minor importance for convention-
al configurations and therefore will be neglected in the following.

The change in incidence associated with a particular motion is calculated
simply by dividing the local perturbation velocity normal to the lifting sur-
face, i.e., the prescribed downwash, by the flight velocity. A wing or
horizontal tail incidence is reckoned positive when the prescribed downwash
is down ( so as to produce incidence of the same sign as positive angle
of attack). Fin incidence is reckoned positive when the prescribed side-
wash is to port (so as to produce incidence of the same sign as a positive
angle of yaw). Changes in flight velocity are calculated positive forward.

The change in perturbation pressure (overpressure relative to the free
stream value) is given by the linearized Bernoulli equation

I _ 1) t (5-8)

where (x,y,z,t) is the velocity potential for the perturbed motion, U is "the
free stream or flight velocity, which is directed along the negative x axis,
and P. is the free stream mass density. The sign of U was chosen as above be-

cause the sign conventions in dynamic stability analysis usually specify the x
axis to be positive upstream. Thus, if to and v are steady perturbation

velocity components along the x and y body axes in the steady flow config-
uration, and the airplane has a forward velocity component U along the x
axis and a sideslip component PU along the y axis, (5-8) can be reduced to

A't! : -,PCU ( u0*, ) (5-9)
of which the last term - viz., - PoU to' constitutes the change in pressure

due to sideslip. The change due to a yawing motion may be deduced in a sim-
ilar manner, pU being replaced by rx . The result (5-9) is, evidently, a
quasi-stationary approximation, but it would be inconsistent to go further
without investigating the yawing of the wing wake. The direct aerodynamic
effects of the various rigid body motions entering the dynamic stability
problem, as inferred from the preceding arguments, are summarized in the
following table. The angular rotations are referred to axes through the
origin cr coordinates. The results for wing incidence also are applicable
to the horizontal tail.

A. Longitudinal Motions

Motion Wing Incidence Change in Flight Velocity

u u

w W/U

q -qx/U -
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B. Lateral Motion

Change in Change in
Bernoulli's Equation Local Flight

Motion Wing Incidence Fin Incidence for Pressure on Wing Speed_

-p U P v°

p py/U pz/U

r rrx/U -rx/u - P rx v0  -ryo

Those terms proportional to r, the wing dihedral angle, require a change in
sign over the port wing (y< o).

The expressions for fin incidence neglect interference effects, which may
be appreciable. If experimental measurements of the fin contributions to the
derivatives C , C and C were available, it might be possible to establish

n n n
np r

mean correction factors to be applied to the local side force coefficients
C , C and C respectively, but these would be crude at best. Moreover, inter-

ference effects in unsteady flow may be quite different than in steady flow, al-
beit usually less important.

The aerodynamic effects of elastic motions are usually such as to intro-
duce only incidence effects, as treated in Chapter III;see also 5.0 and 5.7.

Given the foregoing results for incidence etc., the problem of obtaining
the corresponding pressure distribution may be attacked along the lines set
forth in the following sections, depending upon the wing planform and flow
regime.

5.2.1.4 Basic Wing Problem. The basic wing problem, as implied by the
discussion of the preceding section, is the calculation of the pressure Jump
across the lifting surface due to a prescribed downwash. It suffices, in the
present context, to assume a harmonic time dependence, such that

w '(.Y U INMt) = (3k-A0)

where a is designated as the complex amplitude of the effective incidence or,
where no danger of confusion exists, simply the incidence. The coordinates I
and 11 , which replace x and y , respectively, are dimensionless quantities
obtained through dividing -x and y by a characteristic length, say, the semi-
chord length. Moreover, will be measured positive downstream*. See Figure
5-14, the coordinate system used here and throughout Sections 5.2 - 5.5 are so
chosen that the x axis is parallel to the mean (steady)motion of the airplane.
This system may be referred to as flutter axes, whose relationship with the

* The literature dealing with aerodynamic theory almost universally adopts an

x axis that is directed downstream, in opposition to the convention of dy-
namic stability literature. This difficulty will be at least partially
alleviated in the following sections by the introduction of the modified
coordinate .
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body axes and wind axes are given in Section 5.6.2.

The pressure jump corresponding to the prescribed downwash (5-10) may
be expressed in the form

(5-11)j

where 7 is designated as the complex amplitude of the dimensionless (with
respect to 0c Uo2 ) pressure jump, or more simply, the pressure Jump. The

basic problem then is: given a( , ), to find' ( 4) )

The most common formulation of this basic problem results in an in-
tegral equation of the type

.5

where S denotes the projection of the win planform or Z = 0, and g
denotes the kernel of the integral equation. Closed form solutions of this
integral equation are feasible only in a few special cases in subsonic flow
(e.g., the two-dimensional solution of Section 5.2.2.1), and it usually is
necessary to resort to approximations of the type introduced in strip theory

(Section 5.2.2.1) or lifting line theory (Section 5.2.2.3). In supersonic
flow, on the other hand, a great deal more is possible, at least for first
order theory (see Sections 5.2.3 and 5.2.3.5).

The direct numerical solution of (5-12) leads naturally to the matrix
formulation

where P is the aerodynamic influence matrix already introduced in Chapter
III. The construction of the elements of P from the kernel function g is,
however, complicated by the singularities usually exhibited by the latter.
This problem has been accorded only limited study up to the present time, but
it doubtless will receive considerable attention as the inversion of large
matrices** by high speed digital computers becomes more practical (cf. the dis-
cussion on aerodynamic influence coefficients in Section 5.2.3).

5.2.2 High Aspect Ratio Wings in Subsonic Flow. The first aerodynamic pro-
blem to be considered will be that presented by a wing of relatively high as-
pect ratio in subsonic flow. The simplest approach (Section 5.2.2.1) is strip
theory, i.e., the approximation of the flow at any wing section as a two-dimen-
sional flow over an infinite wing having that section and having the same motion
as the section it represents. This is past. and it probably is adequate if the
inequality (see Reference 21),

* g depends parametrically on Mach number and reduced frequency.

** A reliable analysis of a swept wing might call for as many as 100 control
points (and certainly at least 20), leading to an influence matrix of
10,000 terms (or at least 4,000 for a matrix of rank 20).
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is satisfied,* where k is the reduced frequency based on a representative
semi-chord, and AR is the aspect ratio. Unfortunately, it is more than like-
ly that k AR>3 will not be satisfied in the dynamic stability analyses of
elastic aircraft, and strip theory then must be regarded as a rather rough
approximation.

In the event that strip theory is believed to be inadequate, some form
of lifting line theory (Section 5.2.2.3) may be chosen. Except in the quasi-
stationary approximation, however, lifting line theories are relatively compli-
cated and may not be warranted in view of other approximations that must be
introduced in a particular analysis. It should be remarked, moreover, that
the degree of validity to be expected from lifting line theory when applied
to a swept wing (even assuming that the difficulties associated with the mid-
span kink in the lifting line are removed) is not known with any certainty
at the present time, and it is quite possible that lifting surface theory may
be required for an adequate treatment when k AR is not large.

Neither strip theory nor lifting line theory should be expected to
suffice for wings of relatively low aspect ratio (say AR< 2 or 3). An accurate
analysis of such wings in unsteady flow almost certainly would call for the
application of lifting surface theory, but it appears improbable that aero-
elastic problems could be too serious for low aspect ratio wings in subsonic
flow, and it may be sufficient to use some form of slender wing theory (Sec-
tion 5.2.4.2).

5.2.2.1 Two Dimensional Incompressible Flow. The pressure jump across
a two dimensional airfoil having the leading and trailing edges = -1 and

= +1 respectively,** due to a prescribed incidence c( ) in an incompress-
ible flow of velocity U is given by

Cc- ' -

(for equations (5-14) and (5-15) see References I or 59).

Three-dimensional effects may (and usually do) prove more inportant in the
calculation of first order (in k ) terms than in steady flow, so that the
adequacy of strip theory for steady flow calculations gives no guarantee
with respect to unsteady flow. Large values of k , on the other hand,
render three-dimensional effects less important, as implied by k AR 2,3.

** See Section 5.2.1.4 regarding convention of x axis.
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where k is the reduced frequency based on the semi-chord, and C(k) is

the Theodorsen function

SH 2 ) V) (5-15)

expressed in terms of Hankel functions of the second kind. The integral in
(5-14) is improper in consequence of the singularity at =  , and the
principle value is to be taken in the sense of Cauchy, as implied by the C
on the integral sign.

The strip theory application of the result (5-14) to a three-dimensional
wing having the leading and trailing edges xI(y) and x2 (y), respectively,

requires to be evaluated according to*

(5-16b)

as illustrated in Figure 5-4. Moreover, the reduced frequency in (5-14) and
(5-15) being based on the local semi-chord, is a function of the spanwise coor-
dinate y according to

A -"(5-17)

U

(o-:') (G-o)

Figure 5-4. A Wing Section Shown in a Freestream of Velocity
U, Showing the x and 5 Coordinates Related
by (5-16).

* Note that I is not, in general, measured orthogonally with respect to y

in this application.
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In connection with the foregoing change of variable, it should be emphasized
that the incidence a , as used in (5-14), is prescribed as a function of the
variable , not x

An alternative form of (5-14), which frequently simplifies the evaluation
of the chordwise integrals, is afforded by the trigonometric changes of vari-
able

0

Substituting (5-18) in (5-14) yields

+ L (,)Sr p 0(Cos P)dcO (5-19)

where

L~ec~ z~4L (5-20)
L _. _cos (e - ) 5 o

A first order approximation to the foregoing result may be deduced by
expanding (5-15) in k - viz.,

C I (5-21)

The term ok/2. evidently may be neglected compared with unity in the real part
of (5-21) in virtue of the hypothesis of small k , but the imaginary term,
albeit small, may prove important in the evaluation of damping derivatives.
In contrast to the first order result obtained by substituting (5-21) in (5-19)
the quasi-stationary approximation neglects all terms of order k in (5-19)
except insofar as they appear in a , with the result

21) +( ) i + C 0_ ( X oo (5-22)=7 ii +"-) CO=(]) ,

All that is required in many applications of strip theory to high aspect
ratio wings is the section lift coefficient, as defined by*

C,: .jJ Z (t ow,,IP 1,,,P )ax.
l(eoeJ 2l) (5-23a)

* Of course, the lift coefficient is time dependent. The physical lift co-

iot
efficient is the real part of CR e i

. The same holds for the other
coefficients.
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where (5-23b) follows from (5-23a) upon substitution of x from (5-16) above
and y from (5-11). Substituting (5-19) in (5-23) yields

c~ zj C(.)(COSc<t)+L Si Z J((COs )d (5-24)

The corresponding quarter chord moment coefficient is given by

4 ? X(Z) T/ ) (5-25a)

- - j; ~+±>~d ~(5-25b)

which, upon substitution of (5-19) goes over to

(5-26)
The prescribed incidence for rigid body motions either is constant a-

long a chordwise section (w,p and p; cf. Section 5.2.1.3) or varies linearly
(q and r). The required results then are

2m 2-- (5-27a)

4

Tj rC ) (5-28a)

In applying these results for cf and c , it must not be overlooked
that they are referred to the local chord - vimz., xjy)-x2 (y), as also is the
reduced frequency k , given by (5-17).
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5.2.2.2 Two-Dimensional Compressible Flow. A survey of available results
in two-dimensional unsteady flow of a compressible fluid has been prepared by
Karp, Shu, Weil, and Biot, (Reference 3); in particular, the wartime work of
Dietze (Reference 4) and Schade (Reference 5) is included. Reference also may
be made to later (and generally more accurate) work by Timman, van de VoQren
and Greidanus (Reference 6); Fettis (Reference 7) and Jones (Reference 8).*
The results necessarily appear in numerical form (tables and/or curves), and
they will not be presented here. A first order solution, which generally is
all that should be required in dynamic stability studies, may be obtained in
closed form (Reference 9). The end result for the pressure Jump is

0)

Cos -i n -) L 0).51 sno /5Jc ( Ca ' c( 5 -29)

where the superscript (1) denotes the first order approximation, e and qp
are defined by (5-16) and (5-18), k by (5-17), and

(ri( -(s -so)

The function F(M) is plotted in Figure 5-5. and is seen to have a
maximum value of approximately 0.24 in 0 < M < 0.85 (F approaches -00
logarithmically as M approaches unity, but the linearized theory is not

valid in this limit due to the neglect of terms or order p-4 k 2). Since
F(M) is of relatively small magnitude compared with in k for small k ,
it appears that the principal compressibility corrections appear in the over-

-i
all factor of p , corresponding to the Prandtl-Glauert correction, and,

more important, multiplication of ik by p (the factor nk/2p being
generally negligible compared with the other real terms in (5-29)). The
former correction also would appear in the quasi-stationary approximation, but
the latter affects only first order terms; accordingly, it may be inferred that
the differences between quasi-stationary and first order theories are of great-
er importance in compressible flow than in incompressible flow.

The lift and quarter-chord moment coefficientc corresponding to (5-29)
are given by

C2 4 i$X+/fao/ 5 °  - °- OSOd 0
(5-32)

* A complete survey is given in References 58, 59.
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+Cos 20)

~ F~j)] (5-34a) I

1 (5-34b)

5.2.2.3 Lifting Line Theory for Incompressible Flow. Those theories
that effectively separate the problems of determining chordwise and spanwise
lift distributions are designated herein as lifting line as opposed to lift-
ing surface theories (see also Section 4.2.4). The various lifting line
and ltfting surface theories for unsteady flow developed by Cicala (Ref. 10),
Lyon (Ref. 11), Jones and Skan (Ref. 12), W. P. Jones (Ref. 13), Sears (Ref.
14), R. T Jones (Ref. 15), Kissner (Refs. 16 and 17), Biot and Boehnlein
(Ref. 18), Wasserman (Ref. 19), Reissner (Refs. 20 and 21), and Zartarian,
Hsu and Ashley have been reviewed briefly by Ashley, Zartarian and Neilson
(Ref. 22), who conclude that the methods of Biot and Boehnlein (Refs. 18 and
19) and Reissner (Refs. 20 and 21) are usually to be preferred in practical
analyses. These Theories require considerable computation at best, but in
dynamic stability studies a first order approximation generally will be accept-
able and affects a considerable simplification.*

The theory selected for a first order approximation is that of Reissner
(Ref. 20). The reduction of this work is presented elsewhere (Ref. 23), and
only the results will be presented here. The wing planform to be considered
is shown in Figure 5-6.

As pointed out by Garrick (Ref. 71), the shortcomings of the lifting line
methods are their inadequate treatment of the tip and their inability to
define the moment characteristics any more reliably than the two-dimen-
sional treatment. Often experimental flutter speeds have fallen about mid-
way between the two-dimensional strip theory results and the three-dimen-
sional lifting line theory results. Thus the latter seems to errcr often
on the unsafe side. However, for the first order theory, a I garitbmic
singularity in k that arises in the two-dimensional theory is removed by the
lifting line consideration. See Sectiun 5.4.2.
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bo , J4,

Figure 5-6. Wing Planform of Root Chord C = 2b and

Span Co .

It will be assumed that the incidence may be expressed as the sum of one

or more terms like

where is defined by (5-16). Then the corresponding pressure jump across

the wing is given by Reference 23 (neglecting real terms of order k and

imaginary terms of order k2 )

(5-37)0" 5)f {'(o- csj'i~(~~ L t- 2 ~5
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where 9(ko and X_ satisfy the integral equations

$

'S

and where

F ) - r, V))-ho)jdif F C(5-39)

afin ts wh re

z-7-2

C D) A (5-42)

The corresponding results for the section lift and quarter chord moment co-
efficients are

C2  ,7r.(, (? S) -_j](tCOs'
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(5J1 5)

The integral equations (5-38) and (5-39) are similar in form with that which
arises in Prandtl, lifting line theory for a straight wing in steady flow. Of
the many methods of solution to this integral equation, that which appears best
suited to aeroelastic problems is presented in Appendix A.

The results stated in this section have been applied to an elliptic wing
executing a pitching oscillation (Reference 23), and it was found that strip
theory grossly over-estimates the first order term C for wings of moderate

aspect ratio and small values of the reduced frequency k ; in particular, the
logarithmic term in k that arises through C(k), as in (5-21), is cancelled
out in the three-dimensional results, see also, Section 5.4.2.

5.2.2.4 Lifting Surface Theories for Subsonic Flow. Lifting surface
theories for unsteady, incompressible flow have been developed and utilized
primarily by the British (References 11, 12, and 13), although Reissner
(References 20 and 24) has devoted considerable attention to the lifting
surface integral equations in developing lifting line approximations. An
approximate lifting surface theory for low aspect ratio wings has been devel-
oped by Lawrence (References 25 and 26). Each of the various methods requires
extensive numerical work, and all that will be given here is the lifting sur-
face integral equation that requires solution.*

The velocity field associated with a lifting surface may be represented
as due to a superposition of radiating doublets, the strength of which is
proportional to the pressure jump (7) across the surface. The imposition
of the condition of tangential flow at the surface then leads to an integral
equation relating the normal velocity of the surface at any point, i.e., the
aerodynamic incidence (a), to the pressure distribution, i.e., 7 . This
calculation for a surface exhibiting an arbitrary motion in a subsonic com-
pressible flow was first carried out by K~issner (Reference 27) and yields

2

+ ll (5-46)

wfhere

(5-.47)

* Recently, important advances have been made by KUssner (Refs. 121, 122)

Watkins and Runyan, Woolston and Berman (Refs. 28, 123, 124). See review
in Ref. 71 by Garrick.
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M is the Mach number, -(M2)1/2 , as in (5-30), and S denotes the
wing surface.

If it is further assumed that both a and Lp exhibit the harmonic time
dependence exp(iwt), (5-46) may be placed in the reduced form (eliminating
the explicit appearance of the time depeadence factors)

where the kernel function g is given by

Isj)~ r- RF e Y5]d (549)

It is necessary in order to avoid improper integrals, to carry out the
integration in (5-48) prior to the z differentiation in (5-49). Alternatively,
the z differentiation may be carried out first on the understanding that

(5-48) will be integrated formally by parts and the infinite part discarded.

The kernel function g has been expended in powers of the reduced fre-
quency by Watkins, Funyan and Wollston (Reference 28), and also by Lance

(Reference 29). The first two terms in this expansion are given by

+ V

If the Z differentiation is carried out directly (vide supra) and if the

exponential is expended, (5-50) reduces to

41 &( % o)~ ±)W S(X t z 51 +

but great care must be exercised in applying this form due to the strong
singularity at yo = 0.

5.2.2.5 Subsonic Compressibility Correction. The pressure distribution

over a three-dFinial wing in incompressible flow may be corrected for
compressibility effects by a relatively simple extension (Reference 30) of
the well know, Prandtl-Glauert rule for steady flow.

Let p(o) fyq; ( ,r); k, AR} denote symbolically the pressure dis-
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tribution over a wing of aspect ratio AR due to an arbitrarily prescribed
incidence a( I ,t) at reduced frequency k in an incompressible flow. It is
assumed that the dimensionless coordinate is measured positive downstream
and is referred to the same characteristic length as the reduced frequency k
(but is not necessarily defined by (5-16). The corresponding distribution
in a compressible flow of Mach number M then is given by

z3

-0(00

where P is the Prandtl-Glauert factor, viz.

It should be emphasized that this result is not uniformly valid with respect

to M near M = 1, for the error term involves ( )2. Similarly, it

breaks down for large values of AR , where the results of Section 5.2.2.2 must
be used.

The compressibility correction (5-52) may be stated in words as follows:
the (complex amplitude of the) pressure distribution over a wing of aspect
ratio AR that exhibits an incidence of complex amplitude distribution
a( ,t%) and reduced frequency k , in a subsonic compressible flow, may be

2M2 A2
determined for small values of (k M AR /(1-M 2 )by calculating the pressure

distribution over an affine* wing of aspect ratio (lM2)l/2AR that exhibits

the incidence distribution a( lyp -1q) at a reduced frequency k(l-M2)-1 in22-

incompressible flow; adding to this ik?(l-M)-lj- times the pressure dis-
tribution calculated over the second wing for the incidence distribution
( ,1 -1) on the assumption of steady flow (quasi-stationary approximation);

2 21
subtracting ikM (1-M) -l times the pressure distribution calculated over

this second wing for the incidence distribution ( ,-lq) on the assump-

* A similar wing with the same general appearance as the original wing

(e.g. having the same angle of sweep) but with different aspect ratio
and incidence distribution.
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tion of steady flow; and multiplying the sum of these terms by (-M 2 ) -1/2
It should be specifically remarked that, in carrying out the first of these
steps, any dependence of the incidence distribution a on the reduced fre-
quency k is not to be modified; on the other hand, the dependence of a on
k may be neglected in the second and third steps in consistency with the

approximations already implicit in the transformation.

The transformation (5-52) has been applied to the lifting line results
of Section 5.2.2.3 in Reference 23.

5.2.2.6 Swept Wings in Subsonic Flow. Experience with approximate
treatments of swept wings in subsonic unsteady flow is so limited at the pre-
sent time that it is difficult to assess the reliability of the various methods
that have been proposed. Lifting surface theory may be expected to yield
results of about the same accuracy for swept wings as would be the case for
straight wings using the same number of collocation points. Lifting line
theories are, however, rather less reliable due to the mid-span kink; indeed,
unless some care is excerised in the formulation, the singularity associated
with this kink may render invalid the solution over the entire wing, rather
than only in the mid-span neighborhood. This mid-span kink offers no partic-
ular difficulty in an appropriately modified strip theory, but such a theory
nevertheless must be regarded as crude in consequence of the obviously in-
creased importance (compared with a straight wing) of spanwise effects.

Strip theory approximations for oscillating swept wings have been dis-
cussed by Spielberg, Feetis and Toney (Reference 31) ana by Miles (Reference

32). Let c' be a strip taken perpendicular to the spanwise reference axis
of a swept wing, as shown in Figure 5-7. (It is implicit in the strip theory
approximation that differences in sweep angles of the various axes, such as
the elastic axis, mid-chord line, quarter-chord line, etc., may be neglected).
Viewed as a section of a swept two-dimensional wing, the apparent flight vel-
ocity for this section is U cos A where A is the sweepback angle; in
addition, there is a spanwise component of flow U sin A . The total, effect-
ive downwash then consists of three parts: first, there is the local normal
velocity t (positive down); secondly, there is the product of the rotation
ey, about the (swept) y' axis and the chordwise velocity component U cos A

thirdly, there is the product of the rotation e ,about the x' axis and span-

wise velocity component U sin A . The total incidence is obtained by
dividing this total downwash by the apparent flight velocity U cos A ; this
incidence then must be modified by a correction factor of cos2 A to account
for the reduction of apparent dynamic pressure (since the end results are re-
ferred to the true dynamic pressure fU2/2. The end result for the effect-
ive incidence on the basis of a strip theory approximation thus is given by

CoSA .q . AeVos+O51$in1 j (5-53a)

The contribution due to the time rate of change of ey, " and that due to the

spanwise rate of change of ey,,. both depend linearly on the chordwise coordinate,

are included in y
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(a) plan view, showing section c'

gI.

(b) the chordwise section c' viewed along the y' axis.

Figure 5-7. A Swept Wing
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The result (5-53b) may be used in conjunction with the two-dimensional
theories of Sections 5.2.2.1 and 5.2.2.2 (after introducing the dimensionless
coordinates t and w ) for the calculation of the pressure distribution
over a swept wing of very high, aspect ratio. The effective Mach number to
be used in compressible flow is M cos.A . It should be specifically re-
marked, on the other hand, that the reduced frequency k is independent of
A , since both flight velocity and chord are modified by a factor of cosA
in the swept axis system.

Chordwise structural distorsion usually may be neglected for those wings
of sufficiently high aspect ratio to justify strip theory. Hence y and e

arise from torsion and bending respectively, while arises from the rigid body
motion of the wing plus the contribution due to bending and torsion velocity.
The effective camber due to ; may make important contributions to the loading
on a swept wing.

Lifting line theories for oscillating swept wings have been developed by
Reissner and his colleagues (References 33, 34 and 35) and by Ashley et al
(Reference 22). Both of these methods are, in essence, modifications of Reissner's
work for straight wings (References 20 and 21), but that of Reference 22 is con-
siderable simpler (although neglecting effects of taper). Unfortunately, ex-
perience with both methods is very slight, and a detailed presentation does not
appear to be warranted in the present work.

5.2.3 Supersonic*Wings, Piston Theory

The supersonic wing problem differs from its subsonic counterpart pri-
marily in that the wing is influenced only by a finite portion of the total
flow field. The resulting pressure distributions over those portions of the
wing adjacent to subsonic edges (i.e., edges over which the normal component
of flight velocity is subsonic) may be qualitatively similar to that for a
subsonic wing, but the pressure distributions over those portions of the wing
adjacent to supersonic edges are quite dissimilar.

A particular consequence of supersonic flight speed is that the state of
affairs at a given point on a wing is independent of all points that are fur-
ther downstream.* It is convenient, therefore, to measure the streamwise
coordinate downstream from the most upstream point on the wing (rather
than from the mid-chord line, as in subsonic flow), and this convention will
be adopted in the subsequent sections dealing with supersonic flow. Similarly,
it is convenient to choose the characteristic length for aerodynamic calcula-
tions either as the local chord or as the streamwise distance between the most
upstream and most downstream points on the wing; in particular, the reduced
frequency usually will be referred to one of these lengths.

Before the general theory for supersonic wings is presented, a parti-
cularly simple result must be mentioned which is generally valid for high Mach
numbers or high redaucea frequencies of unsteady motion; and sometimes even for
subsonic Mach numbers, when the surface involved is nearly a plane and the angle
of incidence is small. This is the piston theory, which refers to any method

* A more detailed discussion of the domain of dependence and the various types
thereof is given in Section 5.2.3.5.
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for calculating aerodynamic loads on aircraft in which the local pressure gen-
erated by a body is related to the local normal component of fluid velocity in
the same way that these quantities are related at the face of a piston moving
in a one-dimensional channel. When a linearized theory is adopted, the piston
theory leads to a direct linear proportion between local pressure and downwash.
In this case the fundamental equation (5-12) becomes simply

The pressure-downwash relationship and their conditions of validity will
now be set forth:

if a piston moves with velocity w(t) in the end of a channel containing
perfect gas, whose undisturbed pressure, density and speed of sound are p0 Po
a0 , the pressure change p(t) on the piston is )

where y is the ratio of specific heats of the gas, c p/cv. Depending on the

magnitude of the ratio W/ao, the following approximations may be used:

? r. W2 Wd + I+

~*L2 fr)j
Based on a suggestion of Hayes (Ref. 140), Lighthill (Ref. 141).points out
that the above formulas can be used for arbitrary airfoil motion by interpret-
ing w as the local downwash velocity. The conditions under which these re-
lations hold for airfoil motion have been studied by Lighthill (Ref. 14i),
Landahl (Refs. 142 and 143), and others. For a two-dimensional airfoil the
linearized theory is valid whenever (Ref. 142): M2YI or kMj)> 1, or k v 1.

For a three-dimensional wing the linear and second order theory holds if
(Ref. 143):

(a) /14 , and 82 /M2 <C l,

(b) M6 and kM5 not too large

where 5 denotes the larger of the wing thickness ratio or the ratio of ampli-
tude of unsteady motion to wing chord. k is the reduced frequency for harmon-
ic motion, on an appropriate measure of the "unsteadiness" of the flow.

The piston theory is not valid in the neighborhood of a cut-off wingtip.

Many interesting applications of the piston theory have been given by
Ashley and Zartarian, (Ref. 139).

5.2.3.1 Reduction of Unsteady Flow to Steady Flow Problems. A first order
approximation to the pressure distribution over a wing executing a harmonic
motion in supersonic flow can be determined from the solution to a modified
steady flow problem for the same wing. If the trailing edge of the wing is
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nowhere subsonic the result assumes a somewhat simpler form than when this
restriction is not satisfied, but, insofar as the steady flow problem for the
given wing can be solved, the actual labor involved in constructing the first
order approximation is not appreciably greater (see, e.g., Section 5.2.3.5.).

Let 7(o) [a) denote symbolically the dimensionless pressure jump across
a wing in a steady supersonic flow due to a prescribed distribution of inci-
dence a ; further let < { a denote the velocity potential(Ref. 59) over the upper
surface of the same wing calculated on the (artificial) hypothesis that sub-
sonic portions of the trailing edge may be treated as subsonic leading edges
(i.e., the velocity potential is assumed to be continuous across the wing
wake, in particular vanishing along the subsonic portions of the trailing
edge). Then the corresponding (complex amplitude of the) pressure distribu-
tion over the same wing when the prescribed (complex amplitude of the) inci-
dence a corresponds to a harmonic motion of small reduced frequency k is
given by

([-MY)

where is measured downstream from the most upstream point on the wing, M
is the freestream Mach number, and

B (5-55)

It should be specifically remarked that 7(o) { , represents the steady
flow pressure distribution due to the incidence distribution a a , whereas

/*(o) f a) represents the product of and the steady flow. pressure
distribution a . It also may be remarked that, whereas a may depend on the
reduced frequency k , it is consistent with the first order approximation to
neglect this dependence except in the first term in (5-54).

If the trailing edge of the wing is nowhere supersonic, it follows that

2 (0) toc~(a{~ (-6

where 3 1 is the I coordinate of the leading edge. If, on the other hand,

the trailing edge is at least partially subsonic f must be determined in
accordance with the foregoing instructions (see Section ).2.3.5 for further
details).

It is of interest to note that the foregoing result bears a marked simi-
larity to the subsonic compressibility correction of Section 5.2.2.5. The two
results, indeed, are derived by essentially the same transformation (cf. Refer-
ences 30 and 36), but the end results differ in purpose---viz., that of

WADC TR 55-173 200



Ib

Section 5.2.2.5 accounts for the effect of the Mach number M , whereas that of
the present section accounts for the effect of the reduced frequency K .

5.2.3.2 Two-Dimensional Supersonic Flow. The dimensionless pressure
jump across a two-dimensional airfoil having the leading and trailing edges

= 0 and I = 1, respectively, in a supersonic flow of Mach number M is
given by (Reference 37).

(5-57)

where J denotes a Bessel function of the first kind and zero order. The

0

first term in (5-57), viz., 2a/B , constitutes the well known result of
Ackeret (Reference 38) for steady flow.

If k is assumed small (5-57) may be approximated by

+ *i() ,'J,,_2. MJ1 + ( M / (5-58)1

Alternatively, (5-58) could have been derived from the steady flow result with
the aid of (5-54). The simplicity of the result (5-58) is to be contrasted
with the complexity of its subsonic counterpart, (5-29). This, of ccurse, is
a direct consequence of the absence of wake effects.

The strip theory application of the result (5-58) to a three-dimensional
wing having the leading and trailing edges x1 (y) and x2 (y) respectively,

requires to be transformed according to (5-16).

Y!!

as shown in Figure 5-8.

AU (Y) )S&Zy

Figure 5-8. A Two-Dimensional Airfoil of Chord xl(y)-x 2 (y)
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The reduced frequency in(5-57), being based on the full local chord,
then is given by

and differs from its subsonic counterpart of (5-17) by a factor of 2.

The section lift coefficient corresponding to the first order approxima-
tion (5-58) to the pressure distribution is given by (after integration by parts)

(5-61a)

0( ) B4 (5-61-b)

The corresponding moment coefficient, referred to the axis a(a may be a
function of y in three-dimensional strip theory applications), is given by

C
(5-62a)

(5-62b)

The substitution of the more specific incidence distribution 
a n

(n = 0 or 1 being the more important, particular cases) in (5-61) and (5-62)
yields

(5-63a)

aq, t!+~.~)j to(k~m19& )= ~(r -t. 2m.) 1(n ,<n-') B "

(5-63b)
5.2.3.3 Simple Planforms. A simple planform is one having the component

of flight velocity normal to its edge everywhere supersonic. If ys(x)
defines the edge of the planform this restriction implies

(5-64)
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An important example of a simple planform is the so-called wide delta wing,
as shown in Figure 5-9. The simplest example of such a planform evidently is
the two-dimensional wing of the preceding section.

The result of the restriction (5-64) is that the domain of dependence of
any point of the wing includes only other points on the wing, and the deter-
mination of the pressure distribution due to an arbitrarily prescribed incidence
is relatively straightforward. The end result may be placed in the form (Ref-
erence 39).

YV) + eop MR/f-fve COS'M

5 
(5-65)

where r and tk are dimensionless streamwise and spanwise coordinates, R
is the hyperbolic distance defined by

R = ff4)z -Z~q-#)2.JYZ(5-66)

and S is that part of the wing planform over which R is real for a given
point ( k , ), as shown in Figure 5-9.

IT

/\

//

Figure 5-9. Example of a Simple Planforn ("Wide Delta" Wing),
Showing the Domain of Integration (S) for the
Determination of the Pressure.
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Setting k = 0 in (5-65) yields the quasi-stationary approximation

~O():IfT;I'J d L (5-67)

in agreement with the steady flow result obtained by Puckett (Reference 40).
If terms of order k2 are neglected in (5-65) there results the first order
approximation

5(5-68)

Alternatively, (5-68) could have been derived from (5-67) using (5-54).

The differentiation of the integral in (5-65) as it stands would produce

a singular integrand (since ( /i ) R -  - -( i - 3 ) ), but if a partial

integration with respect t6 is effected prior to the I differentiation,
there results

S

+A- -e EL 1CO5 (AMRJ13)a~(s ' ')Jq 'l(5-69)

where C denotes the curve which the area S intercepts on the leading edge,
as shown in Figure 5-9. Similar results, corresponding to the quasi-station-
ary and first order approximations of (5-67) and (5-68), respectively, may
be obtained from (5-69) by setting k = 0 or by retaining only first powers
of k

That class of simple planforms for which the trailing edge is restricted
to be straight and transverse to the line of flight (i.e., a line of constant

) allows further simplification of the above results in the calculation of
certain spanwise integrals. Let ys denote the strip theory approximation to

the pressure distribution, as given by the results of the preceding section;
then it may be established (Reference 41) that the spanwibe integrals of 7
and 'qr are exactly equal to the corresponding integrals of ys viz.,

jAC7a(1)2(5-70a)

(5-70b)

W.ADC Th 55-173 204



a

These results are valid for all values of k , so that if 7 is evaluated from
(5-65) or (5-68), s is to be evaluated from (5-57) or (5-58), respectively.

The results of (5-70a) and (5-70b) suffice for the calculation of general-
ized, aerodynamic forces associated with deflection functions that are either
independent of i or linear in the spanwise coordinate. In dealing with a more
general spanwise weighting function f(q) it then naturally suggests itself
to try the approximation

f ZO,C/tI)R d' -Jq)(V (5-71)

The reliability of the approximation (5-71) for a delta wing and polynomial
(of degree greater than one) weighting functions has been investigated by
Walsh, Zartarian and Voss (Reference 43), who conclude that it should prove
satisfactory for most practical flutter analyses. Whether or not the approx-
imation (5-71) is invoked, however, it generally proves e.pedient to carryout
the spanwise weighting integration (with respect to q ) prior to the inte-
gration (with respect to ' , 71 ) over the S domain.

It is probable that the simple planform result (5-65) (or (5-68) for small
k ) would furnish a more reliable approximation to the pressure distribution

over non-simple planforms than would strip theory. Such an approximation, in-
deed, would be exact over those portions of a wing not influenced by subsonic
edges; on the other hand, it would be least reliable in the immediate neigh-
borhood of such edges.

5.2.3.4 Lifting Surface Integral Equation for Supersonic Flow. Those
wings for which the trailing edge is nowhere subsonic (subsonic leading edges
being permitted, however) often are conveniently treated by first solving for
the (dimensionless) velocity potential on the upper surface of the wing, which
is related to the pressure distribution according to

~ Lay(, i (5-72)

It is shown in Appendix B that + satisfies the integral equation

where g denotes the kernel

(5-74)
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and S denotes that part of" the wing planform over which the radical is real,
as shown in Figure 5-10 for the particular case of a narrow delta (leading
edges behind Mach lines) wing. The treatment of the improper integral that
results after carrying out the Z differentiation in (5-74) and substituting
in (5-73) is discussed in Appendix B.

//

Figure 5-10. The Domain of Integration for the Integral
Equation (5-73), Illustrated for a Delta
Wing Having Subsonic Leading Edges.

The integral equation (5-73) is not satisfactory for wings having subsonic
trailing edges, since points in the wake would enter the calculation. It then
is necessary to solve directly for the pressure distribution, which, as shown
in Appendix B, satisfies the integral equation

where the kernel h is related to g according to

Y e LP (J-(5-76a)

WT

P/
C-/

.2 r z 7_ /2

Equaton (573), llusratedfor-aDelt

Wing Hain Subs7 oniedngEgs



and where, as before, S denotes that par; of the wing planform over which the
radical is real. This result again leads to an improper integral, as with (5-73)
and (5-74) above. It may be remarked that h resembles, to some extent, the
subsonic kernel of (5-49).

The first order approximations to g and h are given by

(5-77)

(5-78a)

(5-78b)

The results of carrying out the limit operations are

O~k (5-79)

It should be remarked again that appropriate steps must be taken to circumvent
the singularities in these kernels, as noted in Appendix B.

5.2.3.5 ENvard's Methoi. The steady flow integral equations obtained by
setting k = 0 in (5-73) and-(5-75) may be inverted by a method due to Evvard
(Reference 44). The method is, in principle, applicable to planforms of ar-
bitrary shape, but it is of limited value when different subsonic edges are in
close proximity; conversely, it assumes a particularly simple form when the
subsonic edges of the planform are "non-interfring", whose meaning will be-
come clear in the sequel.

Evvard also has applied his method to a wing exhibiting a slowly varying
angle of attack (in particular a linear time variation), and the results so
obtained are valid as a first order approximation (the results for a linear
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time variation are exact). Only steady flow problems will be considered in the
present section, however, in virtue of the transformation of Section 5.2.3.1
which may be used to develop first order approximations to the corresponding
unsteady flow problems.

Consider the symmetric* (with respect to the midspan line) wing shown in
Figure 5-11. The points a and a' are determined by drawing those tangents

to the leading edge that make the Mach angle sin -1 (1) with the free stream

velocity vector. The points c and c' are similarly determined on the
trailing edge, while the points b and b', which separate the leading and
trailing edges, are determined by those tangents to the planform boundary that
are parallel to the freestream. The component of freestream velocity normal
to the wing edge is supersonic along a'oa (supersonic leading edge) and cdc'
(supersonic trailing edge), and subsonic along ab and a'b' (subsonic leading
edges) as well as bc and b'c' (subsonic trailing edges). These edges serve
to define various zones of dependence for the planform, as shown in Figure 5-11,
where the dashed lines drawn into the planform from a, a', b and b' all made
the Mach angle with the freestream flow vector. The various zones now will be
discussed in the order of the complexity of the corresponding pressure distri-
butions. There is, however, no need to discuss separately the zones II, III'
and VI, since the required results follow from those of zones II, III and V in
virtue of symmetry considerations.

The domain (or zone) of dependence S for a given point P on a wing is
determined by constructing the upstream portions of the Mach waves through p
and including all points between these lines for which the vertical component
of velocity does not vanish. The velocity potential at P (on the upper sur-
face of the wing) is given by (Reference 40)

where R is the hyperbolic distance defined by (5-66). The upwash z(  ', ',o)

is prescribed (as -a) on the wing surface, but in general it does not vanish
over the remainder of the plane z = 0; however, the upwash does vanish every-
where forward of the supersonic portion (a'oa in Figure 5-11) of the leading
edge and the downstream Mach waves terminating this portion, so that the domain
of dependence S is always finite in extent.

It follows from the discussion of the preceding paragraph that the
potential at any point P in zone I is given by

TZ (5-82)

where SI is shown in Figure 5-12. The corresponding pressure jump is given
by 

' -. -br -CI (5-83)

* Evvard's results also are applicable to asymmetric wings, but the latter
are of little or no practical interest.
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Classification of Edges \ / Classification of Zones

a'oa supersonic I - influenced only by
l\ / supersonic i.e.

aba'b' subsonic i.e. \ / Il,II' - influenced by super-
su/ sonic i.e. and

bc,b'c' subsonic t.e. \/ single subsonic i.e.

/ lf11 IV'- influenced by super-

cdcf' supersonic t.e / sonic i.e. and
/ single subsonic t.e.

IV - influenced by two
8upersonic i.e.

q V,V' influenced by one

one subsonic t.e.
VI influenced by two

Figure 5-11. Sketch of Supersonic subsonic t.e.

Wing Showing Various
Zones of Dependence.
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where C is the curve intercepted on the leading edge by SI . These results

also could have been inferred directly from those of Section 4.2.3.3 since
zone I may be regarded as part of a simple planformh.

In carrying out the foregoing integrals, it is expedient, following
Evvard, to introduce characteristic coordinates r and s , as shown in Figure
5-12. The required transformation is, in matrix form,

i (5-84a)

It also may be noted that

2.M +S (5-s4c)

Under this transformations, (5-82) and (5-83b) go over to

~S

c.r1  (5-8)

where a is assumed to be expressed in terms of r' and s' through (5-o4a)
Similarly, (5-83b) becomes

)( ,dr ( 5') i'
Tri (5-86)

t r - - (5-s'- 2o(S -r')

In both of these expressions r (s) or, equivalently, sI(r) specifies the

leading edge, and this relation may be used to eliminate either r' or s'
in the line integral over CI *

The zone of dependence of a point in zone II evidently includes a region
(aef in Figure 5-13) in the upwash field between the subsonic leading edge
ab and the downstream Mach wave from a . It was shown by Evvard (Reference
44), that the contribution of this upwash region to the integral (5-82) is just
cancelled by that part of the wing downwash in the zone bounded by the leading
edge and the reflection in the subsonic leading edge of the upstream Mach wave
from the point in question. It follows that the potential in zone II may be
calculated by choosing the effective domain of dependence SII, as shown in

Figure 5-13. Introducing the characteristic coordinates, and letting r (s)
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Figure 5-13. The Domain of Integration (s11 for

(5-87) and (5-88).
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and r2(s) specify the supersonic (a'oa) and starboard, subsonic leading (ab)

edges, respectively, the potential then is given by (cf. (5-85) above)

_ 
1 (5-87a)

s "%s(r9 i

The corresponding pressure jump is obtained by differentiating 2# according
to (5-84c) with the result

+ rsd (r

BT S () (r- 0')J d

(5-8B)

It should be remarked that the last term in (5-88) exhibits a square root
singularity in the pressure as s approaches r2 (s) , i.e., as the subsonic

leading edge is approached. This behavior is characteristic of subsonic lead-
ing edges and is to be contrasted with the requirement (Kutta condition) that
the pressure jump must vanish at a subsonic trailing edge. Evvard has shown
that the latter condition, which must be imposed along be and b'c' in zones
III and III', together with the other requirements upon the solution, may be
satisfied simply by dropping the last term in (5-88), with the result

SJr ; t ))4
,(r) (r-')- 5' O< ' ,)

(5-89)
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The domain of integration for the integral in (5-89) is shown as Sii I

in Figure 5-14, but it should be emphasized that SIII is not an effective

zone of dependence for the potential in zone III. Indeed, this potential is

perhaps most simply determined (although seldom required.) by integrating (5-89)
according to

t(q ) (5-90a)

(dr~d s) (5-90b)

The construction of a first order approximation in zone III using the
result (5-154) requires, in addition to the steady flow pressure distribution
a,,,, the determination of the modified velocity potential j , baseu on

the artificial hypothesis that the subsonic trailing edge may be treated as
a subsonic leading edge. The required result evidently is given by using the
result for even though (r,s) is in zone III-viz.,

V. Sff r s- ) d s" (5-91b)
M(r'ror ( f, (r

Zone IV consists of those points influenced by both of the subsonic lead-
ing edges ab and a'b' . The effective domain of dependence for a point in
this zone follows the construction for zone II, except that the upstream Mach
waves from the point now must be reflected in both leading edges, as shown
in Figure 5-15. The resulting potential is given by

3=ML~Ft r ~ d r 'd 5'(-2

where r (s), r (s) and s*(r) denote the supersonic, starboard subsonic and

port subsonic leading edges, respectively. The pressure jump corresponding to
(5-92) is given by
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1-1 (Si M 9
) I- r')3, s - ' Jz' ) So

-r:(5) 5 r ( (sW)"
B'ITL

(s)) (5-93)

It is evident that if the supersonic leading edge for the wing of
Figure 5-11 were to be extended somewhat further upstream, the reflections
of the Mach waves (emanating from a point in zone IV) in the subsonic lead-
ing edges would cross on the wing. A planform for which this does occur is
illustrated in Figure 5-16. I then is necessary to subtract the downwash
integral over the region SAIV- from the integral over S IV(+ ) to obtain the

effective dcmain of dependence. The results (5-92) and (5-93) remain formally
valid in this case, but it is more convenient in the actual evaluation of the
integral to rewrite the potential in the form

ICS),Z Y.) 1 5 O)

where the first and second integrals correspond to S+) and S() respective-

ly. The pressure jump is similarly transformed to

rs (r:w'sr(S) '-

2 .
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(Equation (5-95) continued)

L. S

The results (5-94) and (5-95) are not valid for points downstream of
b'cb in Figure 5-16 (where b'c and bc are the reflections in the subsonic
leading edges of the Mach lines from the points a' and* a' that separate
the supersonic leading dege from the subsonic leading edges). This is a
consequence of the interaction of the upwash fields downstream of the exten-
sions off the wing of the Mach wave ab' and a'b . The derivation of
results for points influenced by these interacting upwash fields is discussed
by Evvard (Reference 44, page 9), but it does not seem possible to obtain
closed form results that are both general and comparable in simplicity with
the foregoing formulae. These interactions, moreover, become compounde- at each
subsequent deflection in the edges of the Mach cone from its apex, having
no supersonic leading edge to separate its subsonic leading edges, furnishes
an example for which the number of interactions is infinite, so that Evvard's
method is incapable of providing a direct solution.

The pressure jump J'n zone V of Figure 5-11 may be derived from that in
zone IV simply by deleting the last integral in (5-93), while that in zone V'
follows from (5-93) after the deletion of the third integral (containing the
square root singularity at s = s*(r)); as already remarked, this last result

usually is not required explicitly in virtue of symmetry considerations..
Similarly the pressure jump in zone VI may be obtained by deleting the last
two terms in (5-93). Finally, the modified potential for zones V and VI is
given by (cf. (5-91))

= (5-96)

5.2.3.6 Aerodynamic Influence Coefficients. In Section 5.2.1.4, it is
pointed out that a direct numerical solution of the basic wing problem can be
posed in the matrix form

where P is the aerodynamic influence matrix. For supersonic flow this turns
to be i powerful method of handling three-dimensional aeroelastic problems.
Work in this direction is often referred to as the box method.

Analysis using both structural and aerodynamic influence coefficients is

convenient for digital or analog computing machines. Particular promise has
been demonstrated for wings with all supersonic edges, because in this case
the aerodynamic influence coefficients can be determined with relative ease.

In Section 5.2.3.3, it is shown that according to Garrick and Rubinow
(Ref. 39) the local pressure distribution over a wing with supersonic edges is
given by integrating, over the portion of the wing that can influence the point,
an acoustic-type source that is locally weighted by the prescribed downwash
of the wing. See (5-65), et seq. Thus, if any element of area ASi of a wing
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is assumed to have some prescribed motion wi , (or the dimensionless quantity

ai, according to (5-10)), the lift produced by this motion, (expressed in a

dimensionless quantity y according to (5-11)), on any other element 6S with-

In the region of influence of W.i is given by an integration of weighted

sources over 6Si.

Thus the aerodynamic force A.ji that acts on the j element due to the i

element can be readily calculated. The total aerodynamic forces acting on
this j element is given by a matrix equation.

[Ajilit Lj(5-13a)

where all the elements Aji, the aerodynamic influence coefficients, may be

considered known. Applications of this method have been demonstrated by Pines
and his associates (Ref. 144). An example is also given in Ref. 71.

Extension of this procedure to wings with subscnic edges is discussed in
Ref. 144. In Ref. 144, a grid of square boxes is used. Development of other
grids which may show greater numerical advantage has been in progress at the
Analysis Laboratory of the California Institute of Technology.

It must be added that the use of kernel functions, as developed by
Watkins and his associates at NACA, (Refs. .28, 123, 124) leads naturally to
the concept of aerodynamic influence coefficients, and may prove to be of
great value in future developments.

5.2.4 Slender Body Theory

The approximations that form the basis of lifting line theories in sub-
sonic flow (Section 5.2.2.4) break down for low aspect ratio wings, and it
then becomes necessary either to apply the more difficult lifting surface
theory or to seek more suitable approximations. Low aspect ratio supersonic
wings also are difficult to analyze by those methods suitable for wings of
relatively higher aspect ratio; in particular, Evvard's method (Section
5.2.3 5) tends to be impractical in consequence of the inverse relation be-
tween the number of Mach wave reflections and the effective aspect ratio.
Fuselage interference also becomes more important for low aspect ratio wings,
and methods for treating wing-body combinations became correspondingly more
important. It should be remarked that, in all of these considerations, the

effective aspect ratio, ..M 2 AR is a more significant measure than
the geometric aspect ratio, AR.

A simple solution for steady flow past a slender body of revolution was
given by Munk (Ref. 45), who made the approximation that the cross flaw
could be treated as two-dimensional and introduced the concept of virtual
momentum in the calculations of the transverse force. This same approximation
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was later applied by Jones (Reference 46), to low aspect ratio wings in steady
flow, while the work of both Munk and Jones was extended to unsteady flow by
Miles (Reference 47). A formulation of the slender body problem for super.-
sonic flow that was both more rigorous and more general was given by Ward
(Reference 48) and extended to unsteady flow by Miles (Reference 49).

The restrictions that must be applied to the slender body results in
unsteady flow are as follows: (see References 48 and 49)

L4. (5-97)

where k, M and 6 denote, respectively, reduced frequency, Mach number
and the transverse body dimension (e.g., maximum body diameter or wing span)
divided by body length (or, if larger, 8 = lax I).

5.2.4.1 Slender Body of Revolution. The cross force per unit length,
L' ( ) acting on a slender body of revolution due to a transverse distribution
of velocity Uct( ) , positive down, is given by the (linearized theory)
approximation (see Reference 47)

where S( ) is the cross sectional area at . The total lift is given
by

L J" (0-99)

where the characteristic length is chosen as the body length (i). The
corresponding moment about = a is

)Oo~ f-ia ('~' (5-100)

The foregoing result may be extended to bodies of non-circular cross
section by replacing po S( ) by the virtual mass (m) of the local cross

section, the lift per unit length being given by the (total) time rate of
change of the virtual momentum-viz.,

This result assumes the cross sections to remain undistorted, so that the
transverse motion of any particular cross section consists of a pure trans-
lation of velocity U ( ). It also should be emphasized that the result
is not valid for steady flow unless the appropriate restrictions are imposed
on the cross-sectional distribution (sufficient restrictions being symmetry
of the cross section with respect to the y and z axes -Reference 5O).

• Equation (5-101) is not valid in unsteady or steady flow when the re-

strictions mentioned (5-97), are violated.
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5.2.4.2 Low Aspect Ratio Wings. The calculation of the lift on any
transverse section, due to translation of that section, as the rate of change
of virtual momentum may be applied directly to a low aspect ratio wing,
following the original work of Jones for steady flow (Reference 46). The
virtual mass for a flat plate section of semi-span b( ) is given by

(5-102)

substituting (5-102) in (5-101) then yields (see Reference 47)

L .(5-103)

The lift coefficient obtained from (5-103)

C, . L2,5 (5-io4a)

*LA.(5-10k~b)

where S is wing area and AR is the aspect ratio - viz,

,d~z .bL~/$(5-105)

Setting k = 0 yields the Jones result (g AR/2) for the lift (coefficient)
curve slope.

The consideration of wing motions that exhibit a spanwise variation is
expedited by the introduction of the change of variable (cf. Section 5.2.2.1,
where a similar transformation of the chordwise coordinate was introduced)

(5)CO-3(5-106)

The potential on the upper surface of the wing, 4.( , '7)) due to a pre-
scribed downwash cx( , 11 ) then is given by (Reference 47)

- ' r~~Il L\I~ A(5-10Th)
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where L(e,cp) is given by (5-20). The pressure jump may be calculated from
q+ by (5-72);in the partial differentiation of + with respect to ,

it should be emphasized that e does not remain constant; rather, it follows
from (5-20) and (5-106) that

4 (5-108a)

" ( ) +
It is evident from the result (5-107) that the functions sin (ne) would

constitute an expedient choice in developing spanwise deflection modes. How-
ever, the more common choice of polynomials in n offers very little addition-
al difficulty. Consider, for example, the prescribed downwash

0, 2-f(5r)(5-109)

that would arise from a parabolic approximation to spanwise bending. Substi-
tuting (5-109) in (5-107a) yields

2_] [6t,')-(5-110b)

from which the corresponding pressure jump would follow by substitution in
(5-lOa) or (5-lO8b)

5.2.4.3 Slender Wing-body Combination. The wing-body cross section shown
in Figure 5-17 may be analyzed in the slender body approximation by conformal
transformation to a circular section. A motion of pure translation (at any
particular section, so that the incidence a depends only on ) is parti-
cularly simple, and it is found necessary only to replace b( ) in (5-102)
thruugh (5-104) by the equivalent semi-span (References 48 and 49)

0 J (5-111)

This reduces to b if either a 0 or a = b.

The analysis of more general motions yields a result similar :to that of
(5-107) (Reference 49). More accurate methods of treating wing-body interfer-
ence have been discussed by Ashley et. al. (Reference 22).

5.2.4.4 Quasi-slender Wing Theory. The slender wing theory of Section
5.2.4.2 may be regarded as the first step in the development of a solution to
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the wing boundary value problem in powers of the aspect ratio. Adams and
Sears have obtained the next term in this development for steady supersonic
flow, (Reference 51), and their work has been extended to unsteady super-sonic flow by Miles (Reference 52). The results are based on an iteration
procedure and may be expressed in terms of a modified incidence distribu-
tion to be used in the slender wing result of (5-107).

Figure 5-17. The Wing-Body Cross Section of Section 5.2.4.3

The potential on the upper surface of the wing after s iterations may
be expressed in the form

• (Vf (5) r"2"S+2- 25+2O-r (5) 51s n=(h ) 1 (B6).7

(5-112)

where

)C 5 5151P7 (5-113)

The simplest approximation, designated by s = 0, is obtained by letting C° = ax
so that (5-112) and (5-113) reduce to the slender wing approximation (5-107a).
The next approximation is given by (Reference 52)
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Z & 2M

-c 0 S0)) =QL I CO 3 6osf&).

provided that B2 is not too small. If terms of order k2M/B 4 may be neglect-
ed, (5-114) simplifies further to

(,) O.2\r 2. l ,

(0),

It should be emphasized that the partial differentiations with respect to
in (5-114) and (5-115) imply q , not 9 to be held constant.

If B (< 1 the result (5-114) breaks down and must be replaced by
(Reference 52)

ft~bCose)~K 609)

(continued (5-116))
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(Equation (5-i16) continued)

0 ~()L,(.'o~ Q.b (5-n16)

or, for small kb,

$,c0 se)=o'~(S b co s&ei r b (q

As an example, consider the incidence distribution of (5-109) - viz.,

(bcoe)- 1 f{6) = ( )f( )(i+cosz ) (5s -10

Comparing (5-110a) to (5-112) above yields

4- f1. , 3  = Bf ) R 5 (5-119)

while the remaining a(o) vanish. Substituting (5-118) and (5-119) in (5-14)

yields

b*O {[6 ( ) 6 iJ k* r () i....j & ~ )b'-i . Cv)

~-~ .f~)ZL (5-120)
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where i has been introduced in the last term to facilitate the partial

differentiation with respect to . Substituting (5-120) in (5-113) then
leads to

*, .4_ ( " -J')< )2~

whi th remaininga(1) va

n

Perhaps the most important unsteady flow problem that arises in study-
ing the dynamic stability of rigid aircraft is the calculation of tail force
due to wing wake (and also, in lateral motion, fuselage wake). The usual method
of effecting this calculation, already indicated in (5-3), is through a down-
wash derivative dE/da that is evaluated from steady flow theory and/or ex-

periment.

More accurate methods of evaluating the effects of wing downwash on the
tail forces have been discussed in References 22 and 23. These methods so

far have been applied only to rigid body pitching and plunging, but both are
capable of extension at least for straight wings; moreover, the method of

Reference 23, which is based on Reissner's work (References 20 and 21), prob-

ably could be extended to swept wings, following the procedure applied to the
calcultion of swept wing forces therein.

No work on downwash due to elastic motion of a wing appears to have been
published. Fortunately, it probably is satisfactory to neglect downwash

arising from such sources as wing bending and torsion, since these motions
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tend to produce appreciable downwash only over the outer portions of the wing
span, where it can produce little effect at the tail (assuming a conventional,
not a canard, configuration).

5.3 Summary of Results in the Theory of Oscillating Airfoils in Two-Dimen-
sional Flow.

In the present section, existing results of the unsteady airfoil theory
will be summarized as a complement to Section 5.2. However, the scope of the
present section will not be limited to the first order theory.

The basic problem is an oscillating thin airfoil in a two-dimensional
incompressible flow. The mean motion of the airfoil is a rectilinear tran-
slation of uniform speed U with respect to the fluid at infinity. To this
mean motion a simple-harmnnic oscillation of infinitesimal amplitude is super-
posed. Within the framework of a linearized theory, solutions may be super-
posed to generate new solutions. It suffices to consider an airfoil of zero
thickness and zero camber at zero mean angle of attack.

5.3.1 Oscillating Airfoils in Two-Dimensional Incompressible Flow.

5.3.1.1 Theodorsen's Function. To see the way the important function

C(k) enters into the results of the oscillating wing theory, consider the
vertical-translation oscillation. Using the complex representation of har-
monic oscillations, one may describe the airfoil surface by the real part of
the equation

~~* 4 t b e Z t b (5-122)

where is a real number representing the ratio of the amplitude of the

vertical motion to the semichord length b of the airfoil. (', ) are inertial
coordinates.*. w is the circular frequency in radians per second. k is the
nondimensional reduced frequency defined by the equation

k = _- (5-123)

The complex representation of the total lift per unit span is then

2L 12 2 [ ,_ W
k J (5-124)

The moment per unit span, about the mid-chord point, is (positive in the nose-
up sense)

(5-125)

The function C(k) is the so-called Theodorsen's function.

* , )axes are in the negative directions of x, z axes respectively. See

Section 5.2,1.4 and the footnote contained therein.
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C 'k) ( ) (5-126)
/(, ( .k ) /1,J (A)

K, IA)~K k <() ~;~A (5-127)

Eq. (5-126) shows the usual notations F(k) and G(k) for the real and imag-
inary parts of C(k), respectively, and Eq. (5-127) shows the relationship be-

tween C(k) and Bessel functions. K is the modified Bessel function of the
0 (2) H(2)

second kind or order zero, K1  is that of order one. H 12H are,

respectively, Hankel's function of the second kind of order zero and one.

A table of the function C(k) = F + iG is given by Theodorsen and Garrick,

(Ref. 127). More extensive numerical tables of C(k) can be found in

(a) Luke and Dengler, (Ref. 66), J. Aeronaut. Sci., 18, 478-483 (1951).

(This Ref. contains also tables of C(k) for complex valued k.)

(b) Brower and Lassen, (Ref. 67), J. Aeronaut. Sci., 20, 148-15C (1953).

(c) Bisplinghoff, et al., (Ref. 116 Appendix V-J).

Approximate expressions for- C(k) are:

C (k) 0.335
/_ 4 (5-128)

A k

14 5 a, 335
- o.~ "0.32 . (5-129)

The expression (5-128) gives somewhat better approximation for k<0.5, whereas

(5-129) is better for k> 0.5. (See Ref. 58, p. 215 for a detailed comparison)

5.3.1.2 Rear Aerodnamic Center. If the skeleton airfoil executes a rota-

tional oscillation a with a small amplitude about the mid-chord point, the

total lift and moment per unit span about the mid-chord are given by

L = 71rJP U + 2t JoUb ,. (5-130)

1v2 x. (5-13,)
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where

( =. d t (5-132)

A comparison of the expressions L and M 1/2 shows that the term e.x oui

represents a lift that acts at the 3/4-chord point, that the term propor-
tional to C(k) represents a lift that acts at the 1/4-chord point, and that

the term A p b4 (/8 is a pure couple.

The lift due to circulation, 2plft (1 + -k) C(k)a , in E (5-130)

may be compared with the corresponiing term - 2in UAb C(k) k T ea t  due to
P. 0

translation (Eq. (5-124) of 5.3.1.1). The "upwash" at the 3/4-chord point due
to translation is

- : = ~ k (5-133)

That due to rotation 
is,

-w -U . ;  - X2 % (5-134)
It is seen that, in both translation and rotation cases, the lift due to circula-

tion can be written as

L,= 2 IT 1.10 V -A (5-135)

where w stands for either wj or w . Thus the upwash at the 3/4-chord

point has a unique significance. For this reason the 3/4-chord point is called
the rear aerodynamic center.

5.3.1.3 General Solution. Let the mean position of an airfoil be locat-
ed from = -b to t = +b , and let the harmonic oscillation of the points on
the airfoil be described by

(5-136)

The "upwash" -w on the airfoil is therefore given by

t a( b.4) (5-137)

It is convenient to introduce a new variable 0 , defined by

- b cose(5-138)
so that e = a at the leading, edge, and e = 0 at the trailing edge. Con-
sider w as a function of e and t . Let w be expressed by a Fourier
series:

-4 ) (5-139)
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where

U' e I a e t) ate (5-14o)

With the upwash given in this form, the lift distribution can be written as
(References 1 and 27).

. (9,0 07 e) (5-142)

where

o = C C ) Cg ,t, ) - (5-1.43)

,-T -+ ' -i-- ? , ( " (5-144)

C(k) being the Theodorsen's function defined in Section 5.3.1.1.

The total lift per unit span is

L 27rfU LO .& ~ *(o C(k) (P. Z L (5-145)

The nose-up moment about the mid-chord point is

M± =TUba ~wtJ~C~)~ 1 -akJ-(-F~~ ~ (5-146)

These formulas were first given by e ssner and Schwarz. They furnish
a convenient method for determining the aerodynamic force acting on an air-
foil in harmonic oscillation with arbitrary chordwise deflection (Ref. 27).

5.3.1.4 Flutter Aerodynamic Coefficients. The bulk of oscillating air-
foil data exists in the form of aerodynamic coefficients L(,) Lh etc, which are

widely used in flutter analysis. They are useful in the dynamics of an air-
plane when the reduced frequency is not small.

To clarify the definitions, the proper degrees of freedom are first de-
fined. Figure 5-18 shows a two-dimensional airfoil of unit length in the span-

wise direction, having four degrees of freedom h, a, 0 and 5

h = bending deflection of the elastic axis, positive downward, ft.

a = pitching about the elastic axis, relative to the direction of flow,
positive nose up, radians
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AC

Figure 5-18. 'Wing Section
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= angular deflection of aileron about aileron hinge line, relative
to wing chord, positive for aileron trailing edge down, radians

SB = angular deflection of tab relative to aileron, positive trailing
edge down, radians.

{t

Figure 5-19. Aileron Motions
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The standard notations for lengths are shown in the figure. The semichord
is denoted by b . Other dimensions are referred nondimensionally to the
semichord. Distances are measured with the mid-chord point as origin. Thus,

c b a distance between mid-chord and aileron hinge, positive if aileron
hinge is aft of mid-chord,

e b = distance between mid-chord and aileron leading edge, positive if
aileron leading edge is aft of mid-chord,

ahb = distance between elastic axis and mid-chord, positive if elastic
axis is aft of mid-chord.

Similarly, the dimensions d b , f b, x b, etc. can be identified.

For harmonic oscillation, h , x etc. are all represented by complex
representation

h -. t~

where h, a, o 5, are real numbers (small compared to 1), e1, e2; 83

are phase angles by which a, p, 5 lead the wing bending displacement, W
is the frequency of oscillation in radians per second.

The standard tables refer the motion and forces to the aerodynamic center.
For a subsonic flow the 1/4-chord point aft of the leading edge is used. A
notation (h)c/4 is introduced to denote the bending displacement at the 1/4-

chord point. Furthermore, the aileron motion for an aileron with aerodynamic
balance is resolved into two components:

(a) Rotation of aileron about its leading edge, .

(b) Vertical displacement of the aileron with respect to the main airfoil,
z, positive downward.

Figure 5-19 shows this resolution. The relations between (h) c/4 , a z etc.
and h, aj 0 etc. are: I

(k) z j (5-1-48e)

(h)c/4 - bending displacement of the 1/4-chord point

a a pitching displacement about the 1/4-chord point, also

WADC TR 55-173 234



a a pitching about the elastic axis

unchanged

z - -(c-e bp

B unchanged if it is hinged at the leading edge, otherwise it

should be treated in the same way as the aileron.

These degrees of freedom are denoted by the q notation:
(i1 ) 'Ib

b -

(5-150)

The aerodynamic lift per unit span, Lc/ 4 , acting at the 1/4-chord point,

positive-upward in the usual sense, can be written as

L 7 - e P3Lf L + a fLp + + ~Lj(55)

or, in shorthand,

L r b (5-1)
IL

Similarly., the aerodynsamic moment per unit span about the i/4-chord point,
MC/4 , positive in the nose-up sense, is

b.f Z l (5-153)

The force per unit span acting on the aileron, Ple.positive up, is

7r (5-154)

The moment per unit span about the leading edge of the aileron, T l.e.
positive trailing edge down, is:

T T(1

The aerodynamic coefficients Li, Mij P,_ Ti are tabulated. A sunniry of

these tables will be given in Section 5.3.15.

For the relationship between these aerodynamic coefficients and the
conventional stability derivatives, cf. Section 5.6.
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5.3.1.5 Tabulation of Results - Two-dimensional Incompressible Flow
Formulas and numerical tables of the aerodynamic coefficients for an airfoil
with flap and tab, whose hinge lines do not necessarily coincide with their
respective leading edges, have been published by many authors. The most
important references are

(a) Dietze, Luftfahrt-Forsch. Vol 16, 84-96 (1939) (Ref. 75)
Vol 18, 135-141 (1941) (Ref. 76)

(b) W. P. Jones, Aeronaut. Research Council R and M 1948 (1941) (Ref.126)
R and M 1958 (1942) (Ref. 72)

(c) Kfssner and Schwarz, Luftfahrt-Forsch. Vol 17, 337-354 (194o).
Translated as NACA TM 991. (Ref. 27)

(d) Theodorsen and Garrick, NACA TR 496 (1934) (Ref. 2)
NACA TR 736 (1942) (Ref. 127)

The most comprehensive numerical tables are published by KIssner and
Schwarz in the references named above. The relations between the special
functions tabulated by various authors are listed in a paper by W. P. Jones,
(Reference 72).

For flutter calculations, Smilg and Wasserman's tables of L., La etc.

are widely used. These tables are contained in the following references:

(e) AAF Tech. Rept. 4798, U. S. Air Force (1942) (Ref. 81)

(f) Introduction to the Study of Aircraft Vibration and- Flutter, book by
and Rosenbaum, Macmillan Co., New York (1951)(Ref. 80).

(g) AF Tech. Rept. 5153. U. S. Air Force (1914) (Ref. 125)

Reference (c) contains tables for both sealed and unsealed gaps between the
main wing and the flap and tab. Reference (e) contains only tables for un-
sealed gaps. Some tables from (e) are omitted in Reference (f). Reference
(g) gives more elaborate tab coefficients. Spielberg (Reference 73) gives
some values of the coefficients related to a parabolic mode of chordwise

deformation.

The notations used by several authors are listed in Table 5-1.

5.3.2 Oscillating Airfoils in Two-Dimensional Subsonic Flow

The basic integral equation relating the lift distribution with the
upwash distribution, the so-called Possio's integral equation, is far more
complicated than the corresponding equation in the incompressible flow.
Practical solutions are obtained by numerical methods. (Possio, Frazer,

Frazer and Skan, Schwarz, Schade, Dietz, Fettis.) No simple formulas such
as those presented in Sections 5.3.1.1 through 5.3.1.3 have been found except
in the first order theory (Cf. Section 5.2.2.2). A different approach,
originated by Reissner and Sherman, Biot, Timman, Haskind, K{ssner, solves
the boundary value problem by orthogonal coordinates and Mathieu functions.
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Numerical results have been published by Timman, van de Vooren, and Greidanus.

The principal sources of subsonic data are the papers by Possio, Frazer,
Frazer and Skan, Dietze, Schade, Schwarz, Turner and Rabinowitz, Timman,
van de Vooren and Greidanus, and Fettis, see Bibliography at the end of this
chapter. The numerical results of the first eight authors named above have
been compiled and converted into the Lh, Mh, ... coefficients by Luke in
the following:

Tables of Coefficients for Compressible Flutter Calculations. (Reference
82) Air Force Tech. Report 6200 (1950) WADC.

A summary of the published tables is given in Table 5-2. In Table 5-3,
the notations used in some of the most important references are listed.

In Table 5-2, the symbols Lh, Mvt, etc., are defined in Section 5.3.1.4.

These coefficients are referred to the 1/4-chord axis for both the rotation a
and the moment . In Timman, van de Vooren and Greidanus's paper, the

rotation and moment are referred to the mid-chord axis; hence a transformation
is needed when comparison of the data is to be made. This is indicated in
Table 5-2. Under each column the factors in parentheses are the tabulated
quantity expressed in the author's notation. The adjacent coefficients
are the factors necessary to convert to the corresponding Lh, L , M or M

which is listed at the left on the same horizontal line. Thus, under Timman

and opposite Lh , there is an entry -.(k), which indicates that ka is
k

given by Timman and that Lh = (ka)/k 2 .

5.3.3 Oscillating Airfoils in Two-Dimensional Supersonic Flow.

The linearized supersonic flow theory, applied to the oscillating
two-dimensional airfoils, leads to a very simple result (see Section 5.2.3.2).
Actual integrations require the evaluation of Schwarz integrals, which are
discussed by von Borbely (Reference 89), Schwarz (Reference 128), Garrick and
Rubinow (Reference 39), Huckel and Durling (Reference 90). A recent table
by Huckel (Reference 91) is very useful.

Comprehensive numerical tables can be found in the following:

(a) Handbook of Supersonic Aerodynamics (Kennedy) (Reference 85)

M : 1.1 (0.1) 2.0 (0.2) 4.O (0.5) 5.0 (1.0) 12

fl: 0.01 (0.01) 0.04 (0.02) o.10 (0.05) o.4o (o.1o)
1.00 (0.20) 3.0 (0.50) 5.0, 7.5, 10, 15, 20 (8 fig.)

The coefficients CL , CL , C Mh, C listed in this Handbook are,

respectively, Lh, L Mh, M defined in Section 5.3.1.4. The independent var-

iable in the Handbook is the frequency parameter ift, which is related to
the reduced freqaency k and Mach number M by the relation

WADC TR 55-173 237



TABLE 5-1

COMPARISON OF NOTATIONS

Duncan Theodor- Kussner Dietze Frazer

Reference Collar sen Schwarz Ref. 75
Ref. 74 Ref. 2 Ref. 27 _ 76 Ref. 77

Chord 2

Free stream w 1/
velocity

Circular frequency Wa zwf)

A

Reduced frequency kZW-

Translational I.
motion at Ref. Al e
point

Rotational motioh a 1
of airfoil

Lift vector 7 A 7

(Theodorsen function) I-2 -j - __ -- - i " C

II I + TT,
Real part of C(k) I-2 F .A

U2

Imaginary part of 2 -8
C(k)

Lift (+ upward) -- P

Pitching moment M ae
(+ nose up)
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TABLE 5-1 (continued.)

Cicala Lyon Kassner Jones Scanlan Fung,

Ref. 10 Ref. 78 Fingado Ref 72 Rosenbaum Bisplinghoff
Re. "7 Smilg, Ref 58, 59
Ref. 79 Wasserman

Ref 80,81

2) =

C70

14A*

o T -1 2

K 4 .

*1

1 i-Xji-- P CZ -. +__ -

711
-' F I

i II

* Y is the point about which the moment is taken.
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A44

(b). Tables of Coefficients for Compressible Flutter Calculations (Luke)*

10 5 10 5 25 10

approx. 0.1 (irreg.) 100 (5 dec.)

The scope of these tables is indicated above in the ranges of M andl.

The notation is as follows: If a table is given for a range of arguments from
0.10 to 0.50 at intervals of 0.05; this is indicated by writing 0.10 (0.05)
0.50. The notation (5 fig.), (6 dec.), etc., implies that most of the figures
in the table in question are given to the apparent accuracy of 5 figures or 6
decimals, respectively.

In the supersonic case it suffices to tabulate the four fundamental
aerodynamic coefficients named above. The lift and moment' coefficients in-
volving the motion of a flap and a tab can be expressed in terms of these

four fundamental coefficients. Explicit formulas expressing these relations
involving a flap are given in Reference 85. A complete list of formulas in-
cluding both the flap and the tab is given in Reference 3.

Tables given by Garrick and Rubinow (TR 846, Reference 39) and Huckel
and Durling (TN 2055, Reference 90) present aerodynamic loads on an oscillating
airfoil-flap combination without aerodynamic balance or gap. Lift and moments
are related to the tabulated quantities as follows (in the notation of Ref. 39):

+ L t CL3  Lq ] [c.( L~~

3L3  - ( ;A/'t,)L

L3 L' -

1- - M ' - C h )L

* Reference 82.
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TABLE 5-3

COMPARISON OF NOTATIONS

'I

Possio Possio von Kussner Schwarz Dietze
Borbe ly

References Ref 83 Ref 84 Ref 89 Ref. 16 Ref 129 Ref 4

Chord t 1 j 21 2 1

Free stream V U v v
velocity

Density,undisturbed f

fluid 
do

Circular freq. A 12 r C 4

Reduced freq. Ca r

Frequency (2M2k
parameter 2- )- -

Kernel of _____ - 1 1-
Possio's eq.

t -

Mach no. M

Downward
displacement at -? -r - -

Ref. point

Pitching angle
(+ nose up)

Lift on wing 
- - -(+ upward)

Pitching - Mmoment # M - -A4

(+ nose up) _ __
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TABLE 5-3 (continued)

~Ca

(D C, * Ref58 4

Ref 88 Ref 39 Ref 3 Ref 82 Ref 87 Ref 6 Ref 7 Ref 85 59 Ref 56
b "1 26 i °26 _ 

t V

Wr k
, I k . k k k

I ,

- -,---1 _- K K- K -

a, AA4 A4
abu th mi-hr is wrte as MI , etc

5513I

M- t1 Al ' IM _ A.M ~ r

* Y is the point about which the moment is taken. Momient
about the mid-chord is written as M/,etc.
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fn; -M (C4 4- 1 (M2j 4 )-( -)1all

Ls ]J3 Ll (M,
Z 4

L-, L L L etc. are tabulated. Me denotes the moment per unit

span about the "elastic axis" i.e. the axis of rotation located at ahb be-

hind the mid-chord point. M1 denotes the moment about the aileron leading

edge, which is located at e Pb behind the wing mid-chord point (Cf. Figure 5-18).

5.3.4 Oscillating Airfoils in Two-Dimensional Transonic Flow

Whereas the steady-flow airfoil theory is essentially nonlinear in the
transonic range, the linearized results for unsteady flow appears to be mean-
ingful if the motion exceeds a certain degree of unsteadiness.

The limiting case of M-..l was first studied by Rott, (Reference 92).
The various aerodynamic coefficients at M - 1 have been computed and tabulated
by Nelson and Berman (Reference 93). Their notations are exactly those of
Garrick and Rubinow (Reference 39), which are given in Section 5.3.3.

The magnitudes of the (linear) theoretical sonic aerodynamic loads be-
come infinite as -the reduced frequency k approaches zero.

The potential flow theory indicates a possible loss of damping in the
single-degree-of-freedom modesI particularly in the high subsonic and low
supersonic regimes. It must be remembered that the underlying flow usually
involves complex shock patterns which are themselves often in motion, and,
hence, a great deal of effort is needed to refine and Justify the theoretical
picture.

5.14 Oscillating Finite Wings

Wings of high aspect ratio are often analyzed by the "strip" theory, i.e.,
each strip is handled as though part of an infinite wing, having the same nor-
mal velocity distribution as that existing at the strip, and all strip effects
integrated spanwise in accordance with the mode of vibration chosen. See Sec-
tions 5.2.2, 5.2-2.1, 5.2.2.6, and 5.2.3.2 for explicit formulas applicable
to the incompressible, subsonic, and supersonic flow according to the strip
theory.
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Wings of small aspect ratio may be analyzed according to "lifting-line,"
"lifting-strip", or "lifting-surface" theories, with various degrees of
accuracy. There does not exist any comprehensive tabulation of aerodynamic
coefficients for finite wings. In the case of the first order (in frequency)
theory, analytical solutions are presented in Sections 5.2.2.3; 5.2.2.4;
5.2.2.5; 5.2.2.6; 5.2.3.3; 5.2.3.4; and 5.2.3.5. In the absence of tables, these
formulas must be used.

The summary to be presented in the following sections will indicate the
numerical information that is available at present.

5.4.1 Oscillating Finite Wing, Incompressible Flow

Among the many theories of oscillating finite wing mentioned in Section
5.2.2.3, Reissner's method is generally preferred because of its simplicity
in reasoning and its high degree of systematization. Reissner's method
leads to the canclusion that the spanwise induction effect may be expressed
in terms of a single function a(y*) which vanishes when the induction effects
are neglected.

The function a(y*) depends only on the spanwise coordinate and the mode
of oscillation of the wing. It has no disturbing influence on the chordwise
integration of pressure distribution which yield running lift and moment,
being carried through these as an additive correction to C(k). No complete
rederivation of two-dimensional formulas like those for L, Me.a. is necessary,

all that is necessary is to replace C(k), wherever it appearS, by C(k) + a
the latter being fixed by the location of station y*, and by the particular
type of motion producing the desired force or moment.

The steps required in Reissner's theory may be summarized as follows:

(1) The vibration morle is completely specified. The upwash over the wing
is written as

~~~~~~1 co )e' 1 ~ ~ t

where J T,~)=~ j.7

is the instantaneous vertical coordinate of the vibrating mean surface.

-12)(2) Determine fl (y*):

SL ~~f e_ -T 41L( k) t

This is the quasi two-dimensional reduced circulation which would be gen-
erated by the motion at station y* in the absence of spanwise induction
effects. The notations are: (See Figure 5-6,x, z axes are the negative of
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y'a

6 - chord at midspan

kU

(3) Solve the following equation for n (y*):

where jp(k) is a function tabulated in Reference 20, TN 1194, and K( )
is related to the Cicala's function tabulated in References 20 and 10 (TN
1194 and TM 887). The details of a method of solving this equation, which
is of lifting-line type, are described in Reference 21, (TN 1195).

(4) Compute a(y*):

-~ Cy') 1 C~k) j.- Ck) Jk

(5) The pressure distribution, lift and moments are computed according to
the strip theory.

(6) The corrections to the strip theory for the influence of finite span are
determined from the c(y*) and added to the loads determined by the strip
theory. Each of these corrections is derived by identifying all terms contain-
ing the Theodorsen's function C(k) in the expression for the two-dimensional
running load due to the particular type of motion considered, and in these
terms replacing Ck) by the value of a(y*) at the same spanwise station.

The execution of these steps is greatly simplified by using tables pre-
pared by Reissner and Stevens (Reference 21, TN 1195). Reissner's theory
agrees well with experiments on rectangular wings for aspect ratios as small
as 2.

The corresponding first order in frequency equations are given
in Section 5.2.2.3.

For wings of large sweep angle, no three-dimensional theory exists
which is not based either on questionable assumptions or on elaborate,
poorly systemized computational procedures. Strip theories are often used,
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see Section 5.2.2.6; see also Barmby, Cunningham, and Garrick (Reference 94,
TR l104), and Bisplinghoff, Ashley and Halfman (Reference 59, P. 395-400).

Wings of aspect ratio of order 1 are discussed by Lawrence and Gerber
(Reference 25), and Laidlaw (Reference 95).

Wings of small aspect ratio (a small fractional value) are discussed by
Lcmax and Sluder (Reference 96), Voss and Hassig (Reference 97), Merbt and
Landahl (Reference 98).

Wing-body combination is discussed by Bryson (Reference 99), and Miles
(Reference 52).

A successful empirical correction applicable to low-aspect ratio wing
is described by Laidlaw (Reference 100).

5.4.2 Oscillating Finite Wing, Subsonic Flow

The results presented in Sections 5.2.2.5 and 5.2.2.6 give a simple2
correction of compressibility provided that the parameter (k M AR)/ 2-

is small compared to 1.

In the general case, a first order solution is given by Statler (Ref-
erence 56) under the same assumptions as in Reissner's theory for the in-
compressible flow. Numerical results are available only in case of an
elliptic wing with an elliptic spanwise load distribution.

Statler's first order solution appears in its final form very similar
to the corresponding Reissner's solution for M a 0. The differential pre-
ssure distribution, i.e., the negative lift distribution over the airfoil,
is given by the following expression:

2 C 4f- - -
AU iT -ii

J-X 171*
± j~ e-~(5-156)

where

M +~Ms Cr M, s')+o (5-157)

and A 7 A-

r./,e'z)

+AYC2 -AM+A2r )+2 (5-158)
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The definitions of the other terms are:

semichord length, ft.

= amplitude of pressure, lbs/ft2. = -

parameter defined by -

(J i U ,-a) (5-159)

X dimensionless coordinate in free stream direction-T

= dimensionless coordinate in spanwise direction7" (-160)

parameter defined by Y (5

S ratio of semispan to semichord at midspan

k reduced frequency -

= downwash function - le .k + ?

provided that the wing surface is defined by ( 1,y) e t&.

, .L i-X ° tf, - ____-x

A - I -XI' , "y X (5-162)

- -- (5-163)

Y = Euler's constant4 1,7ta72)

This equation shows that, as in the incompressible case, the aerodynamic
span effect manifests itself as an additive correction, a , to the basic two-
dimensional function C within the limitations of the lifting-strip theory.

To terms of first order in frequency and first order times the logarithm
of frequency, the real and imaginary parts of the function $ may be written:

S(5-164)
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where, with p = VI-,

(5-165)

2At r 7 (5-1.66)

The function $ is plotted in Figure 2 of Reference 56.

The function S(j/*', M, AR) is the three-dimensional analog of the
function C (, M) which is the compressible version of Theodorsen's
function C(k). At M . 0, C $ M) represents the first few terms of
the series expansion of Theodorsen's function in -the neighborhood of the
origin.

Although the imaginary part of C / M) has a logarithmic singularity
in its slope at zero frequency as in the incompressible case, the same is
not true for the finite span function S . The singularity cancels out in the
finite span case, and $ is linear in frequency. Statler relies on this par-
ticular property of the 5 function as a basic justification of the first
order theory in application to aircraft dynamics.

Aerodynamic Derivatives

For an airfoil which is undergoing uniform vertical translation and
a rotation about its midehord, the instantaneous wing surface may be written,
in Statler's notation:

Y , .* e ( -t BX) (5-167)

For rotation of a full-span control surface with hinge position qP at its
leading edge (see equation 5-167),

q , ,0o o . -

The total lift force and the total moments about the midchord and the
hinge line may be written in the form: ( S - wing area)

=- f.UZSe'L CkA(4 -( L ') Y I( #:La)+C(4( 5 -169)
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9/ e & c )] (5-171)

Analytical expressions for LA, L , Mc etc. are given in Reference 56. Plots

of these derivatives versus aspect ratio are given in Reference 56 for Mach
numbers 0, 0.5, 0.7 and 0.8. The hinge moments derivatives are given in
Reference 56 for the above Mach numbers and for hinge positions of (p = 0.50A,
0.667A, 0.75v, 0.90it, i.e., for hinge positions of 500/o, 85.50/0, 97.50/0
chord.

5.4.3 Oscillating Finite Wing, Supersonic Flow.

Sections 5.2.3 - 5.2.3.6 give complete information on the first order
supersonic oscillating finite wing theory.

Strip theory is much more accurate and widely applicable in supersonic
flow than the subsonic case. Walsh, Voss, Zartarin (Reference 43) studied
the generalized forces used in the modal approach of aeroelastic analysis,
and showed that for wing with all supersonic leading edges and a straight
trailing edge, the strip theory is exact for computing any generalized force
acting on a deformation mode which is arbitrary chordwise but contains no
higher than the first power of the spanwise variable y . See also, Reference
41 and equations (5-70a) and (5-70b) of Section 5.2.3.3.

Table 5-4 gives a summary of existing literature on finite wing data in
supersonic flow.

5.5 Indicial Response of an Airfoil to Step Function Input

Indicial responses, such as the transient lift due to a sudden sinking
motion of the airfoil, or a sudden change of angle of attack, a sharp-edged
gust, etc., are important in problems of gust response, maneuver, etc.

Information on the indicial responses of airfoils in a two-dimensional
flow is quite complete. Finite aspect ratio corrections in an incompressible
flow are known. These are presented below. Finite aspect ratio corrections
for indicial responses at finite Mach numbers have not yet been sufficiently
studied., and cannot be presented. In Section 5.5.8, the wing responses to a
sinusoidal gust are given, which are useful in computing the transfer func-
tion for the gust response problem, and also in the generalized harmonic
analysis of airplane motion in turbulent air.

5.5.1 Aerodynamic Forces Acting on a Thin Airfoil in Unsteady Motion--
Two-Dimensional Incompressible Flow

The unsteady aerodynamic force acting on a thin airfoil in unsteady
motion in a two-dimensional incompressible fluid was obtained by Wagner,
Kussner, von Kirm~n and Sears, and others. In a general motion the pressure
distribution over an airfoil is caused partly by the circulation about the
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TABLE 5-4

SOURCES OF DATA ON WINGS IN SUPERSONIC FLOW

(Dotted lines - Mach lines)

Wing Shape Motion or Derivative Reference

,,,. Plunging, pitching Nelson, NACA TN 2494 (1951'
' A (Ref. 130)

Miles, NAVORD 1234 (1950)
JI '% (Ref. 131)

" Pitch, roll Brown, Adams NACA TN 1566
(Ref. 109)

Longitudinal and Froehlich, J. Aero. Sc.
lateral 18, 5(1951) (Ref. 132)

Plunging, pitching, Stewart, Li. Quart. Appl.
rolling Math, 9 (1951)(Ref. 133)

LiJ. Aero Sc. 18, 3(1951)
(Ref. 134)

General, pressure dis- Chang, NACA TN 2467 (1951)
tribution given. (Ref. 135)

Pitching, plunging Watkins, NACA Rept. 1028
(Ref. 136)

Pitching, plunging de- Watkins, Berman, NACA Rept.
forming to quartic law 1099 (Ref. 137)

Watkins, Berman, NACA TN
3009 (Ref. 138)

Pitching, plunging Moskowitz, Moeckel, NACA
TN 2034 (Ref. 112)

ALong and lateral Malvestuto, Margolis, NACA
• TN 1761 (Ref. 1ii)

Long. and lateral Harmon, NACA TN 1706
(Ref. 110)

x ' L Lateral derivatives Jones, Alksne (Ref. 108)
NACA Rept. 1052
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airfoil, and partly due to non-circulatory origin.

Consider first the growth of circulation about the airfoil which starts
impulsively from rest to a uniform velocity U . Let the chord of the airfoil
be 2b , and the angle of attack (assumed small) be a . Let the impulsive
motion take place at the origin when T - 0. (Figure 5-20). The vertical
velocity component (downwash) of the fluid is a step-function of time and
distributed uniformly across the chord:

(5-172)

Then, according to the Kutta condition that the velocity at the trailing edge
must be finite, one derives the lift due to circulation on a strip of unit
span as a function of time:

= 2rbfo U -w j ) (5-173)

where
Tr t
h (5-174)

is a non-dimensional quantity proportional to time. The function ('c
is called Wagner's function (Section 5.5.2), (Figure 5-21).

Let an airfoil have two degrees of freedom: a vertical translation h ,

called, bending, positive downward, and a rotation a , called pitching,

positive nose up, about an axis located at a distance ahb from the mid-chord

point, ah being positive toward the trailing edge (see Figure 5-18). h and

a are assumed to be first order small quantities. As shown in Section
5.3.1.2, in bending and pitching motion the downwash at the rear aerodynamic
center (3/4-chord point) is of unique significance. The same holds for
arbitrary motion. If one replaces w in equation (5-178) by the increment
of downwash at the 3/4-chord point, the circulatory lift can be obtained.

Let a prime denote a differentiation with respect to the nondimensional
time I : h' a db/dt etc. Then the downwash at the 3/4-chord point due to
h and a degrees of freedom is

W (.) = U C~ V tUk r) -+ (12 T) U <o(t) (5-175)
By the principle of superposition, the circulatory lift is given by the
Duhamel's integral (see, for example, Refs. 58 and 59):

fr d rJ (5-176)

where L2..- w r)

In the above equation the motion is assumed to have started at time % 0.

By substitution of (5-180) into (5-181),

WADC TR 55-173 252



Figure 5-20. I-mpulsive Motion Of Airfoil

0.5-

0

?I he/P cAords

Figure 5-21. Wagner's Function
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L ,(r): = z r Cr)2  # j - o)<"rv + -- c ,

The noncirculatory pressure distribution contributes the following terms:

(a) A lift force with center of pressure at the mid-chord, of amount equal
to the apparent mass Pgib 2 times the vertical acceleration at the mid-chord
point:

LI zji---- - Q. £ - ,-,. A"- q £ , ") (5-178)

(b) A lift force with center of pressure at the 3/4-chord point, of the

nature of a centrifugal force, of amount equal to the apparent mass p ib

times U d:

L = Trb- U ,,
3  d7 0-( (5-179)

2 2b 2

(c) A nose-down couple equal to the apparent moment of inertia ob (U-) times

the angular acceleration d2 6/dt2 :

M = - , - ,. (-18o
a dt (5-180)

The total lift per unit span is then

L + L j (5-181)

The total moment per unit span about the axis of rotation is, (since LI acts
at i/ 4 -chord point):

M (# "4A ) L, bL 2 -( % ) L + M4. (5-182)

For indicial motion, L2 and Ma become delta-functions.

5.5.2 Wagner's Function, i (z)

The exact expression of the Wagner's function (,r) (Cf. equation (5-178)
Section 5.5.1) is

K +

(5-183)
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where K o, K I; I, II are modified Bessel functions of the second and first

kind, respectively, with argument x implied, An approximate expression
which agrees within 2 per cent of the exact value in the entire range 0 (t
<00 is given by Garrick (Ref. 119):

2 ?>o) ()--8I4()

Another expression is given by R. T. Jones (Ref. 15):

(r)- 0. 4 e- (5-185)

whereas W. P. Jones gives (Ref. 120):
- 0. 0+1 "T -C.3

j r) / - e./.s e - o, 3'3 5 e (5-186)

The expression (5-191) gives slightly better approximation than (5-190) for

t < 2.2.

Figure 5-21 shows the Wagner's function. It is seen that half of the
final circulatory lift is assumed at once and that the lift approaches
asymptotically its steady-state value when V - 00. The center of pressure
of this lift due to circulation is at the l/4-chord point behind the leading
edge.

5.5.3 Finite Aspect Ratio Effect, Incompressible Flow

R. T. Jones (Reference 15) gives approximate expressions of 4(') at

M = 0 for finite elliptic wings; e being based on the half-midspan-chord:

d €L

AR ) TL

3 1-0 .283e'0. 5
40r 1. 21

6 l-0.3 61e-0381# 1.5x

00 1-0.165e -0.04550-_0335e0. 300'2

5.5.4 Ku"ssner's Function (C), Incompressible Flow. The lift in-
duced by a gust can be expressed by a fundamental function t(T) which re-
presents the ratio of the transient lift to the steady-state lift on an
airfoil penetrating a sharp-edged gust normal to the flight path. Let the
speed of the sharp-edged gust be w , then by definition the transient lift
coefficient is

~.() tI dak (5-187)
where dCL/dx is the steady-state lift-curve slope, and r is the dimension-

less time parameter

C b (5-188)
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T represents the distance traveled by the airfoil, measured in semichords.

The following table gives the Kussner's function for incompressiblefluid, as given by von Karman and Sears, and R. T. Jones (Ref. 15):

dCL

3 i-0.679e -0.227e 1.2
6-I- 4 e V 29 0 't  -0 725*r -3.00 -C

6 1o.448e d -0.272e " -0.193e 1.51X

O l-0.500e -0.500e- ,_ 2 K

In the above table it is assumed that the leading edge of the airfoil encounters

the sharp-edged gust at the instant r - 0. The f4nite aspect ratio data re-

fers to elliptical wings. The mid-span semi-chord length being the character-
istic length in the definition of t for finite wings.

Bisplinghoff, Ashley and Halfman (Reference 59) give the following
approximate expression for AR z o0:

2. (5-189)
1. z -r + 0.8o

The lift induced by a variable gust can be written as a Duhamel integral.

Since *(0) = 0, one obtains the following expression if the gust is first
encountered at r • 0: /d

u 7 uo (5-190)

where S is the wing area, and the strip theory is used. w(%o) is the gust

speed at a point at a distance equal to 'C, semi-chord lengths from initial
point of penetration.

The resultant of the gust-induced lift, when M a 0, acts at the 1/4-

chord point.

5.5.5 Indicial Respcase in Two-Dimensional Subsonic Flow. Linearized

theory for the indicial admittance of a two-dimensional airfoil entering a

sharp-.dged gust, or making a sudden pitch or a sudden sinking, has been

worked out by Lomax, Mazelsky, and others.

Existing tables cover only the case of vertical translation and pitching

of a wing whose chordwise sections do not deform.

In a compressible flow the noncirculatory flow patterns do not adjust

themselves immediately to changing boundary conditions. The concept of

virtual mass becomes meaningless. The 3/4-chord point also loses its

significance as the rear aerodynamic center. Hence two indicial-admittance

functions, one for vertical translation and another for pitching velociv,

replace the single Wagner function. Moreover, the center of pressure does not
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remain at a fixed point. Hence both lift and moment expressions must be given.

For an indicial sinking velocity h ,, starting at f a 0, let the lift
and pitching moment about the axis of rotation at the leading edge be:

T U (511

A 'r r)- 2ry l (- b) (t) (5-192)
r2U

where
-r rT

For an indicial angular velocity qo about the leading-edge axis, let

L / r ~ /U~S (~ b (5-193)L Cf

l (r 5 & c (5-194)

The lift and moment for an arbitrary small motion starting at t - 0 are:

/ .
L~) ~ 2  /%U€ -t '- (r.)

Tir
f

~0 
(a) r- r

z /U

ddi

(5-195)

TLhe primes on L' and MI indicate that they were calculated for a pitching

axis through the leading edge.
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Lomax et al. (Reference 101, TR 1077) suggest a supersonic analogy by

which the functions are simply expressed when Z lies between 0 and 2M/(M+I).

The limiting values are:

/l -- 1 '-

c (o) = / -/

M 77 M 7,-

(o)= ~ = _____ (5-197)

3 7rM ____

For smaller values of o'; 0 - $ C -

-2 T
I-r) = -- /- (- 4

CM,, - 2

2Mm I -Alb) , (Af-Z)J
2M M

OC C T M M - -- M + 264- ( -

For larger values of ? , Mazelsky et al. have obtained the 4's by a Fourier

integral transformation from the harmonic oscillatiorr data. References 102

and 103 present data for M = 0.7; Reference 104 presents data for M = 0.5,

0.6. Mazelsky and Drischler give the following approximate exponential re-

presentations which are convenient in solving the gust response or dynamics

problem by Laplace transformation method:

Pt) = +b i, ee d + b. e (5-199)

Table 5-5 lists the various constants associated with the functions for plung-
ing motion. (4c)C/4 refers to the moment taken about the quarter-chord axis.
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This is done to demonstrate the rapidity of approach to its final value of
zero. Note that

S (.) (5-200)

Table 5-5 also lists the various constants associated with the pitching motion,
for an airfoil rotating about the 3/4-chord point, with the moment taken about
the 1/4-chord point.

(5

The corresponding Kussner's functions for entry into sharp-edged gust
are defined by the following equations for two-dimensional lift and moment
per unit span: L (

2- rf U (2b) VV' CM k() (5-202)

where w is the vertical velocity in the uniform gust region, which meets

the leading edge at T - 0.

Only tne lift function c(-V) has been tabulated in the subsonic case.

For 0 * 2M(l1+M),

rr 
(5-203})

where the moment acts about an axis through the leading edge.

Table 5-5 lists the various constants in the exponential approximations
to *c(9) for various Mach numbers. The literal formula to which they refer

to is equation (5-199).

5.5.6 Indicial Response in Two-Dimensional Supersonic Flow

The definitions of IC(r), 
4 CM (r), c (T) and c Mq(T) are retained as in

M M

equations (5-191)- (5-194). The limiting values are

2 2

M TR -6
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2-
3 7r M

The functions are given by Lomax et al, (Ref. 101), and are listed in
Tables 5-6. The reader is reminded that the pitching moments are assumed to
act about the leading edge of the airfoil, and are positive in a sense to
depress the trailing edge.

The indicial functions *c(v) and M (v) for supersonic entry into

a sharp-edged gust are ubtained by Biot (Reference 105) and Chang (Reference
106). Formulas and curves of the * functions can be found on page 374 of
Reference 59.

The indicial functions for a trailing-edge flap are calculated in Refer-
ence 106 by Chang.

5.5.7 Indicial Response at Mach Number Equal to I

Heaslet, Lomax, and Spreiter (Reference 107) give the indicial responses
at M = I . The asymptotic (steady-state) values are all infinite. The
theoretical indicial responses can be used within the range of the number of
chord lengths traveled for which they show reasonable agreement with their
subsonic and supersonic counterparts. There exists no experimental confirma-
tion at present.

Tables giving the and * functions at M = 1 can be found on pages

378-379 of Reference 59.

5.5.8 Sinusoidal Gust

For a two-dimensional sinusoidal gust acting on a two-dimensional air-
foil at uniform forward speed U , let the coordinate axes be fixed on the
airfoil and the vertical gust be represented by a velocity distribution

which expresses the fact that a sinusoidal gust pattern, with amplitude W
(a constant), moves past the airfoil with the speed of flight U . If the
wave length of the gust is A , the circular frequency (Z with which the
waves pass any poixc of the airfoil is

2 U
1A

If the gust velocity w(j. t) is considered positive upward, the relative
velocity at any point on the airfoil relative to the fluid (measured positive
upward) is

i r ( [ t) = -
- / ) 

e
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TABLE 5-6. INDICIAL FUNCTIONS IN TWO-DIMENSIONAL FLOW AT
SUPERSONIC SPEEDS, FOR SUDDEN SINKING MOTION
AND SUDDEN PITCHING ABOUT LEADING EDGE.

Function Range of T Equation for .

IA4 -1
m

i'4#I M .-- A M) _ __ _ __ _

M 2

0 12" - I , (

M, - ,,A -/j7 F
_II I I [1

"+ cos-' A- -f

A~ A/

Z,+ I( . r)

N-lIW- II,

Lm 3 f -(
a ~ ~r ~A4 ~ (11
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where the transformation a b cos e has been made for points on the air-
foil. Using the general solution given in Section 5.3.1.3, one obtains the
lift and moment per unit span; (M about the midchord point) in an incom-
pressible fluid:

L 2 rj W 6V

M-= L,

where A t b/T. and

L J~c -T,( ) C~k + kJUC

The resultant lift acts throuzh the 1/4-chord point from the leading edge.
The factor 2ApbU (k) represents the frequency response (admittance) of the
lift to the gust. The function ;(k) is plotted as a vector diagram in
Figure 5-22. An approximate expression for Iq(k)I , useful in the gust re-
sponse analysis using the transfer function method, is

2a7rI-* 2"rk

Sinusoidal Gust Acting on a Wing Moving at Supersonic Speed

The lift and the moment per unit span about an axis of rotation located
at ahb behind the mid-chord point (Cf. Figure 5-18) are, for M > 1,

4- Ub W wt
L e,

e . Zg I7 Jo<L0 A'+o
z 'P U Ar 4e 2. ++ [j€_

where - 4', 5

- 2.-,'-,i

The functions fo f0 , are tabulated in References 39 and 91. The first

term in the M -equation can be thought of as the effect of the lift act-e.a.

ing at the 1/4-chord point, ah a -1/2. However , the presence of fl shows

that the gust produces no fixed center of pressure, independent of frequency,
such as occurs in the incompressible case.

r.6 Stability Derivatives

5.6.1 Application of Oscillating Wing Theory to Unsteady Motion

The aerodynamic forces acting on an airfoil in general motion may be
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Figure 5-22. Vector diagram showing the real and imaginary
parts of Sears' T(k) function as function of
the reduced frequency k.
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written as a Fourier integral if the aerodynamic forces corresponding to
simple harmonic oscillations are known. They may also be written as a
Duhamel's integral if the forces corresponding to a unit-step motion are
known. Simpler results can be obtained., however, if the motion is an expo-
nential function of time: either a nonoscillatory simple exponential diver-
gence or an oscillation with exponentially divergent aplitude.

In the incompressible flow case, Luke and Dengler (Reference 66) pro-
posed that the results obtained by considering simple harmonic motion be
applied to damped or divergent oscillations by replacing the reduced frequency
in Theodorsen's circulation function C(k) with the appropriate complex argu-
ment. The justification of this generalization in the divergent motion case
seems evident since a divergent motion implies that the vorticity in the wake
decreases exponentially. The generalization in the damped motion case has been
discussed by Greidanus and van Heemert (Reference 114), by a physical reason-
ing based on the damping effect of viscosity on the vorticity in the wake. It
was shown that a physical interpretation can be given the generalized C(k)
function provided that the damping is small. Dengler, Goland and Luke (Refer-
ence 115) also showed that results obtained according to this generalization
compare favorably, when the damping is small, with those derived by more
rigorous methods. Their result shows that for low damping and small reduced
frequencies, the functional dependence of the theodorsen function on the re-
duced frequency is independent of the amount of damping.

It seems plausible that these arguments should hold also in the com-
pressible flow case. The philosophy of this simplification is generally
accepted. Hence in application of the oscillating wing theory, which is deri-
ved for a simple harmonic motion with a time factor e iat or eikcr , one can

replace simply in the final result the factor im by x if the time factor

were e . If the final result can be expanded into a power series in iaw
or A , then the successive coefficients may be regarded as successive stability
derivatives about an equilibrium flight condition. For example, if the lift
coefficient due to an oscillating angle of attack is

, = ,Lo I- , + It . ) V 1 ,,, ' .) (5-2o4)

then

CL- (0.. + , .4 A . + "'" )oJ f oe" ) (5-205)

As mentioned before, the Theodorsen's function C(k) cannot be expanded into
a power series in k at the origin k = 0. Hence the stability derivatives
about an equilibrium flight condition cannot be defined from the two-dimen-
sional incompressible flow theory. This difficulty readily disappears when
finite aspect ratio is considered. For wings with a finite aspect ratio, power
series expansion about the origin (k = 0) is legitimate and the stability de-
rivatives are rigorously defined. (See Section 5.4.2)
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Data from the two-dimensional incompressible flow theory are useful, of
course, when the reduced frequency k, (or the imaginary part of X ) is not
zero. Although rigorous derivation of the stability derivative at the steady
flight condition is impossible for the two-dimensional case, a plausible pro-

cedure has been developed by Goland, Luke, and Sacks (Reference 69, WADC TR
53-425). In this method the real and imaginary parts of C(k) are fitted, in
each specific range of frequency, 15y a linear or quadratic expression. (For
example, by the least squares method). The fitted expressions for the aero-
dynamic coefficients are then truly polynomials from which the stability
derivatives are determined. The same procedure has always been used in most
British papers on wing flutter, in which the so-called "classical derivative
coefficients" are defined for appropriate frequency ranges. (See page 228,
Reference 58, and Reference 68).

5.6.2 Transformatioa of Coordinates

In the literature on the unsteady flow theory, as in practically all of
the papers quoted in Sections 5.2 - 5.5, the coordinate system is always chosen
parallel and perpendicular to the average motion of the airfoil. Hence, the
X-axis is always horizontal and a rigid body wing motion consists of a rotation
about a point on this axis through an angle 8 and a downward translation of
a distance h from this horizontal reference axis. This axis system may be
referred to as flutter axes. In dynamic stability analysis, however, it is
conventional to use the stability axes or body-fixed axes which are fixed with
respect to the airfoil with the origin at the center of gravity and the X'-

axis along the initial trimmed flight path. In this system the velocities w
and q - de/dt, rather than the displacements, are the dependent variables of
the motion.

With reference to Figure 5-23, it is seen that the relations among the
respective velocities of the two systems are:

= wCose -

1-7 =V~.o8 .tAr SjA

V, w are components of velocity along the stability axes; a 0 .s the ordin-
ary instantaneous angle of attack equal to w/V.

if- e is small, w<< V, A -4 V then

To the same order of approximation, the lift and moments referred to
both axes are the same. Hence in order to define the forces and moments in

terms of w and e of the stability axes, it is only necessary to replace
h by w - Ue in the aerodynamic expressions derived in the flutter axes; the
pitching angle and flap angle remain unchanged.

5.6.3 Wing Wash Effects in the Vicinity of the Tail

The tail is affected by the oscillating stream due to the wing wake.

Cowley and Glauert (1921, R and M 718) first accounted for this unsteady flow
condition by approximating the downwash lag by the time required for the flow
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Figure 5-23. Wing Section Showving Velocity Vectors
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to travel from the wing to the tail. This leads to the M. and Z. de-
w w

rivatives in the quasi-steady theory, * being the translational accelera-

tion. These derivatives are modified by the unsteady-flow theory, which
accounts for the phase lag of' the downwash. The downwash at the vicinity of
the horizontal tail due to vertical translation and pitching of the wing in
a subsonic compressible flow is tabulated in Reference 56 by Statler. The down-

wash derivatives wt, w" etc are defined, for the wing motion with a verticalA.
translation of semi-amplitude Ab(]a = semichord) and a pitching angle about the

mid chord with semi-amlitude B rad. The wing surface is therefore described
by the equation

(5-207)

The downwash velocity at the horizontal tail, is then given by the

following expression:

0, o) TJ e k0 A (~+ w" + S ~~ J(5-208)
In Reference 56, w A , w" w, w" are plotted against aspect ratios for

Mach numbers of 0, 0.5, 0.7 and 0.8 and for the ratios of (tail length)/

(semichord) equal to 4, 6, 8, and 10.

Wing wash effects are strongly influenced by the fuselage interference.
The important interference effects probably make the theoretical determination
of the wing wash effects on the lateral derivatives rather unreliable.

5.6.4 Stability Derivatives of the Airplane

As an example of putting together the oscillating wing theory and the
wing wash effects to form the stability derivatives of an airplane, the sub-
sonic longitudinal derivatives in body coordinates will be quoted.

Let Statler's notation, Section 5.4.2, be used. An unswept airfoil hav-

ing three degrees of freedom is considered: vertical translation, pitching
ab ut the midchord, and flap deflection. The lift, the moment about the mid-
chord, and the hinge moment expressions are given by equations (5-169), (5-170)
and (5-171). In transformation to the body axes, it is necessary to replace

iw bA, B, and C in these equations be w - Ue, & and 6 respectively. The
wing wash coefficients at the horizontal tail are defined by equations (5-207)

and (5-208). If the tail length is sufficiently large, it is reasonable to

assume that the rotation of the horizontal tail can be neglected and that

rotation of the airplane as a whole about its center of gravity cau3es a pure
translational motion of the tail for small disturbances. Furthermore, the
equations quoted above were derived for undamped oscillations so that
for damped or divergent oscillations, * = iam, - iau, 6 = iab, should
be substituted. Hence, for an airfoil which is undergoing uniform trans-

lation and rotation about the point = ahj , the negative lift force on the
wing may be written as
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~ 1  s [j w A 0- 434

where LA = L' + iLA  etc. This may be put into the following form for a

general motion:

~,oiKs' 2 + ~

Let a subscript ( )w refer to wing, then

~2rLA

L,,,,L

ii

Similarly, let ( denote quantities pertaining to the horizontal tail, the

negative lift on the tail is
W

r U r ,

where I is the horizontal tail efficiency factor, E is the downwash angle:
e w IT, 0,O) /u

T "i -( w ' + We +
&'V~iA") + 9 W8 .. 4 WA" I

Substitution of the F- expression into ZT  leads to

TM ~ U3 r(j+(
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where

F ( A'1

Z(j~ ir cyv, A (IjVV

7r 4

7 , - 21T L'

Similarly the moment derivatives can be derived. Detailed expressions, as
well as numerical data for the coefficients L', Lt , w', wB etc. are given

in Reference 56. A

Lateral derivatives are discussed by Goland, Luke and Hager, Reference70.Smlrthe omibteiontofvfsecaae e deivsed Dile xpe ssion s.5. . as..

see also References 56 and 70.
The contributions of fuselage are discussed in Sections 5.2.4. - 5.2.4-.3,

It is advisable in practice to adjust the theoretically determined
stability derivatives in such a way that at zero frequency of oscillation
they conform withthe corresponding experimentally determined static stability
derivatives. This adjustment is particularly important when aero ynamic
theory is to be used on control surfaces since leading and trailing edge
shapes, aerodynamic balance, gaps, and boundary layer characteristics have
such predominant effects upon the hinge-moment derivatives that large differ-

ences exist between theoretical and experimental results even in the steady
case. The calculated derivatives may be replaced by their measured counter
parts in a way such that the theoretical variations of the air loads with
frequency are unaffected but the correct static air loads are produced at zero
frequency.

5.7 Influence of Elastic Deformation of the Structure

5.7.1 Introduction

As mentioned in Chapter II, the influence of the elastic deformation
of the structure becomes important when the flight speed is so high that it
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becomes comparable with (say, more than 50 percent of) any of the critical
aeroelastic speeds, such as the wing divergence speed, the control reversal
speed, or the wing and tail flutter speeds.

Structural deformations are of two maih types:
(a) Elastic deformation of the main structure, which changes the con-

figuration of the aircraft as a whole.
(b) Local distortions, which may or may not be elastic, and may be of

importance in relation to control forces since the "heaviness" of a control
flap may be sensitive to small distortions of its surface.

Distortions of type (a) are amenable to mathematical analysis and are
of main concern to the stability and control of aircraft. These elastic dis-
tortions can be further classified into two kinds, according to their time
history:

(al) Those elastic distortions caused by the aerodynamic, gravity and inertia
loads in steady uniform rectilinear flight, or in a steady maneuver, such as roll-
ing at constant angular velocity.

(a2) Those distortions caused by transient loads, such as those due to
a gust, a sudden deflection of the control surfaces, or those due to vibrations
or flutter of the structure.

In most practical cases, the first kind, the steady state distortions,
account for the essential influence of the elastic distortion on the stability
and control characteristics of the aircraft. These happen also to be the
easier to analyze. The second kind of distortions are of great importance in
the gust response, flutter, stall flutter, and buffeting problems, and to air-
plane stability and control when the flight speed is close to the flutter or
buffeting speeds.

5.7.2 Methods for Investigating the Effects of Structural Distortions

The principal methods are:

(a) Solution of the differential equations or integral equations govern-
ing the elastic distortions, or the matrix equations approximating these exact
equations - the collocation approach.

(b) The method of iteration or successive approximations.
(c) The method of generalized coordinates - the modal approach.
(d) The method of the modification of derivatives.

Method (a) has been duscussed in Chapter III (Sections 3.2, 3.3), where the
equations of motion of an elastic airplane are derived in the matrix form.
This is called the "collocation" approach in Chapter III because of the way
by which the approximate matrix equations are derived. Exact equations can
be obtained in a similar way, but since exact soluti6ns are difficult to
obtain except in the simplest idealized cases, the matrix approximation is
usually the most powerful approach.

The method of iteration or successive approximation (b), is concep-
tually very simple. As an example, consider the effect of elastic deformation on

the lift distribution. Let a r)(s) denote the angle of attack of the air-
foil at all sections, if the wing was perfectly rigid. One starts from the

angle-of-attack distribution a (r) of a rigid wing, and finds first the lift
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and moment distributin corresponding to (s), and then the elastic de-

formation .(e)(s) that this lift and moment distribution gives. Next one

determines the lift and moment distribution corresponding to U(s) = a (r)
£(e)

+ 9 computed in the first cycle,and then determines the elastic deforma-

tion, a (s), again,using the new lift and moment distribution. If, by re-
peating the process, one arrives at a limiting function U(s), then That limit-
ing function is the equilibrim angle-of-attack distribution of the elastic

(r)
wing corresponding to u, (s).

The actual execution of the method of iteration may take the form of

matrix iterations. This method will not be discussed further here. The reader
may find detailed expositions in Reference 58.

The method of generalized coordinates (or the so-called modal approach),
has been discussed in Chapter III, Sections 3.1 and 3.2.2.6, and will be further
illustrated in greater detail in Chapter VI.

The method of modification of derivatives was first used by Gates and
Lyon (References 57, 60). In a general form it is presented in Section 3.2.2.3,
under the title of auasi-static solutions. The essence of this method is the
assumption that the elastic distortions occur very slowly in relation to the
lowest relevant natural frequency of structural oscillation. It is inapplicable
when the forces and moments proportional to the distortional velocities and accel-
erations cease to be negligible. Whenever applicable, the great simplicity of
-this method recommends itself. In this approach the number of dependent vari-
ables and the order of the differential equations are identical with those of
the rigid aircraft. The stability derivatives are however, modified to account
for the elastic deformation.

5.7.3 Influence of the Flexibility of the Fuselage - An Example of Modified
Derivatives from the Modal Approach

The formulation of the equations of motion of an elastic airplane accord-
ing to the modal approach has been given in Section 3.2.2.6 and will be illus-
trated further in Chapter VI. For the convenience of the reader, however, the
equations required f)r the present example will be derived anew. This exnple
may also be regarded as a simple illustration of the results which were prevented
in Section 3.2.2.6 in a condensed matrix notation.

Consider the influence of the vertical flexibility of the fuselage in
longitudinal-symmetric motion (Reference 57). Assume that the bending of the
fuselage gives a displacement in the direction of the body axis oz (see Figure
3.2) equal to : dte) e o~j(5-209)

where d(t) is the single generalized coordinate, and e(x) is the function
that defines the mode of bending. Since z is positive when d is positive,
e(x) must be positive when x is negative. The coordinate d is supposed
to be a small quantity whose square can be neglected. The components of velo-

city and acceleration in the direction of the z-axis for any point of the rear

fuselage or tail are
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vel. r- + d ev.) (5-210)

ac.= - c)(5-211)

where it is assuned that ox is the wind axis, TMe inertia force in the z-axis
direction is

> [ , -r />~ ~e~J ~ .(5-212)

and the inertia pitching moment about the airplane c.g. is (x being positive for-
ward of the e.g.):

~f*. (5-213)

The summation extends over all mass elements bm of the airplane. From the
above expressions the equations of motion can be derived in the manner of Sec-
tions 3.2.1 and 3.2.2. (Cf. in particular, equation (3-1A)).

The complete equation of the normal forces will be

.. - __ )

(5-2:L4)

where dtand 4Z

are aerodynTanic derivatives for the fuselage bending.

The longitudinal force is unaffected ty the fuselage bend~ng except through

the aerodynamic derivatives c and . Hence

- = t,<) %C-215)

The pitching equation is

(5-216)

To formulate the tending equation we must calculats the work done in the
virtual normal displacement bz = e(x)bd and with the associated increment of

)e(x)
slope - = d. Let Fi (t) represent the generalized bending force caused by

external forces such as those due to the operation of the controls or the impact
of gust, then by definition

,6(.-ur, 1 forC) -ex' W()x- k (-
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Hence

0,xire~frniaI £ce).Cx) (5-217)

Similarly, the generalized force caused by the inertia forces is, from equations
(5-211) and (5-212).

The generalized force caused by the aerodynamic and gravitational forces is ob-
tained, as in (5-217), by integrating the product of the aerodynamic force and
the function e(x) over the entire airplane. The result may be expressed as

gF 2F
generalized aerodynamic derivatives , , etc. relating to the generalized

force of the bending mode. Finally, the generalized elastic restoring force

corresponding to the assumed bending mode may be written as (y)d. If the fuse-

lage behaves like a beam, the elastic derivative can be computed simply as follows:
f

Since the generalized bending restoring force corresponding to d is (r)d, it
1 f 2

follows that the strain energy is 1 () . On the other hand, since the de-
flection curve is e(x)d, the curvature is e"(x)d and the strain energy per unit

length is I EI (de"(x)] 2, where EI is the local bending rigidity. On equat-
ing the two expressions for the strain energy one obtains

i = EZ [2 dZ ]
- l e(x]z (5-219)

where the integral covers the fuselage. The generalized rigidity derivativef I
may also be obtained by a static loading test if the airplane is available.

Let a load W applied at the tail produce a deflection z relative to the
tangent to the fuselage center line at the c.g., and let the corresponding value
of the bending coordinate be d , then the strain energy is

L~z .Y (5-220)
2.

from which R can be found. In the analysis it is also convenient to express

the generalized rigidity constant T- in terms of the (hypothetical) frequency

f ,-(rad.!sec.) of uncoupled free vibration of the fuselage:

where the term in the parenthesis is the generalized mass of the bending mode.

On summing all the generalized forces, the equation for the bending mode
is obtained:
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d A + (5-222)

)z M
The aerodynamic derivatives 7- Td etc. are almost wholly attributable

to the tail whose effective angle of incidence depends on d and d . Let xt

be the coordinate of the tail aerodynamic center, then the angle of incidence of
the horizontal tail due to the fuselage bending is

- ( ' ,. )+ o e (x * )/Z4

The increments of X, Z, and M corresponding to this change of incidence can be
easily found and the derivatives are determined.

Equations (5-214)., (5-215), (5-216), and (5-222) define the longitudinal
motion. The corresponding determinantal equation for the free motion is a sextic
in 7 .

5.7.3.1 Quasi-static Solution, Modified Derivatives. In equation (5-222)
the three terms proportional to the generalized coordinate of fuselage bending,
d, are

(5-223)

Now in the stability analysis, d, as well as u, w, q, 6tc., are assumed to be of

the form constant times e I where t is the unit of time employed in the dimen-
sionless system (Section 3.2.1.3). Hence we may write the quantities in (5-223)
as

+ e2
r : •(5 -22 4 )

where the elastic stiffness term ; has been expressed in terms of the fuselage

vibration frequency "f as was shown in equation (5-221). Nowfor the motion of

the airplane as a whole the numerical value of N /,r is usually much smaller than
wf . If this assumption is made, i.e.

4< (5-225)

then the first two terms in (5-224) are much smaller than the last term and can

be neglected. Great simplification results if the assumption (5-225) is valid.

With the assumption (5-225) the equation for fuselage bending, equation
(5-222),may be solved for d :
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ci-~F = . c+ ()F

7_x)

(5-226)

A substitution of (5-226) into the rigid-body motion equations, equations

(5-214), (5-215), and. (5-216), eliminates the bending coordinate from the
equations of motion.

Further simplification is obtained by observing that in general the air-
plane relative density parameter p is large. Now when the last three terms
on the left hand side of equation (5-214) are reduced into non-dimensional form,
they read:

,A.' d 24 5-227)

where, in addition to the notations introduced in Section 3.2.1.3, we have
designated

- ---I(d has dimension of a displacement) (5-228)

(c = chord)

_ (5-229)

C F4.

Ux¢ (5-230)

The characteristic length f' is chosen to be the chord length c in the lon-
gitudinal equations, d, e(x), C , and C are dimensionless. C and Cdd z zd  zd

may be assumed to be of the same order of magnitude. e(x) is of order 1, hence
if

A
- / (5-231)

uhe first two terms in (5-227) will be negligible in comparison with the last
term.

A solution obtained through the incorporating of the assumptions (5-225)
and (5-231) is termed a "quasi-static" solution. After a quasi-static solution
is obtained, one should check the assumptions (5-225) and (5-231) again to see
if they were valid.

The result of eliminating the fuselage bending coordinate from the vertical

force equation (5-214) in accordance with the quasi-static assumption is
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S ~~9~L (x (5-232)

A comparison of this equation with the corresponding equation for a rigid air-
plane shows at once that they are of identical form provided that the coeffi-
cients are modified as shown in the following table, where

(5-233)

Coefficient of Rigid Airplane Elastic Airplane

CU- 7

'.4+
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One notices in the above table that the aerodynamic coefficients of , I q
vanish in the rigid airplane equation, in accordance with a conventional

practice in which the only first order unsteady flow term retained is the mom-
ent derivative )M/)* in the moment equation. If the full first order unsteady
flow aerodynamics were employed the coefficients of these terms would be )7Z/A ,

Z/Z , Z/ respectively. Several terms introduced by the flexible fuselage,
the F derivatives, could be quite small and negligible. This will become clear
in each particular case.

Similarly, the corresponding coefficients for the longitudinal force equa-
tion are:

Coefficient of Rigid Airplane Elastic Airplane

". _ _~ "_X
-ro -KfL

" X

2 w K2.-,.

W D X Ct" faC

Wi -#

The corresponding coefficients for the pitching moment equation are

Coefficient of R igid Airplane Elastic Airplane

'A-F

U..
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Coefficient of Rigid Airplane Elastic Airplane

vq M

Ky 3 e(X)

Forcing function M, K(t) K P (t

where

S-A 1 (5-235)

With the modifications indicated, the resulting equations are of the same
form as the rigid airplane equations.

5.7.3.2 Static Stability. On setting 'A - 0 in the equations of motion,
the condition for static stability is obtained. In free motion (X1  Z =

= F1 - 0) let the value of the determinant of the coefficients be denoted by po.

The condition p 0 > 0 in isolation gives no information about the stability, ex-
cept that it is not statically neutral. But if all the other test functions
(Hurwitz determinants)*are positive, a change of sign of p0  from positive to

negative indicates the onset of instability and the unstable constituent is a
non-oscillatory divergence, corresponding to a real positive root of the deter-
minantal equation. Approach to the neutral condition p. a 0 is accompaied by

increasing sensitiveness to applied forces. (See ) 4.10, Duncan, Reference 57)

On noting that q a x e, the static stability is obtained from the equa-
tions of the previous section. Assuming further a horizontal flight with 0 a 0,
one obtains

Z _k )w-K 0 (5-236)

- C- w

* See Reference 80, or Reference 58, p. 476.
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or AO -am~ ~ J (F~'1_

__ _ F Z (5-237)

The last two terms give the influence of the fuselage flexibility. In general,
K1 may be neglected in comparison with K

3'

5.7.4 Modified Derivatives from the Collocation Approach

The dimensionless longitudinal equations of motion for a rigid-airplane,
given in equation (3-39), reads

+L (CP -- TC,

4 Y

1q- d t -F 4-

These equations are written as a single matrix equation in equations (3-41) of
Section 3.2.1.3.

For an elastic airplane, the transverse deflections at points i = 1,21 ..... n

are incorporated in a column matrix z(e) (Section 3.2.2.1) as follows
z( e )  --- _ = ! x , , )

The quasi-steady solution to the longitudinal motion of an elastic airplane
is given in equation (3-139a) of Section 3.2.2.3. A comparison of the quasi-
steady equations with the rigid-airplane equations shows that the rigid-airplane
equations will be equivalent to the elastic-airplane equations if the following
modifications were made, (See 3.2.2.3 for definitions of the underscored matrices).

(1) The u-equation, unchanged, under the assumption that the effect of elastic
deformation on this equation is small, (cf. 5.7.3.1, assuming K2  1.).

(2) The w equation:

CD and its derivatives, unchanged

_ A
VTACL "T 17 C2

cc, Co -_1'YA C,u
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L~- C 2 4

[4 g

CL +OceV C-- CL4Y M

CLI > CL, Y A C21

(3) The moment equation:

4 +

C" C

4 
M .-

The applicability of the quasi-steady approach is subject to the assump-

tions of small X and large )I as examined in Section 5.7.3.1. Not all the

modifications listed above are necessarily significant. On close examination of

each particular case, a number of modifications may be neglected and the modified

scheme may be greatly simplified.

An entirely analogous derivation of the modified scheme for the lateral

motion equations can be made under the same assumptions of small X and large pi

5.7.5 Modified Derivatives from the Modal Approach

General expressions for the modified derivatives from the modal approach can

be derived from the equations of motion given in equations (3-146) to (3-152),
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and (3-154) to (3-162), in accordance with the steps illustrated in 5.7.3.

5.7.6 Simplified Estimates of the Static Aeroelastic Effects on the
Longitudinal Stability and Control

Under certain assumptions very simple expressions can be obtained which ex-
press the elastic efficiency of the horizontal tail and the effect of elastic
deformation on the static stability derivative 6cCL. These formulas are

applicable to unswept wings and tails. The shift of the center of pressure on
a swept wing due to elastic deformation is so sensitive that a more detailed in-
vestigation is needed.

Consider an airplane with unswept wings and tails in horizontal rectilinear
symmetric steady flight. When the elevator angle changes, the pitching moment
about the airplane c.g. changes. In order to study the efficiency of the tail
alone, it is convenient to consider the unbalanced pitching moment itself, in-
stead of the dynamics of the airplane as a whole. For this purpose, the airplane
shall be assumed to be held fixed, against any disturbed motion, at the e.g. of
the airplane. In this fictitious condition, a measure of the tail efficiency is
the rate of change of the pitching moment coefficient with elevator deflection,
CWC)6 , p being the elevator deflection angle (positive if deflected downward).

Owing to the elastic deformation of the tail and the fuselage, the derivative
6W3 for a real airplane is smaller than that of a rigid airplane. The ratio

.-- rigid (5-238)

is called the elastic efficiency of the elevator.

In order to calculate the elastic efficiency, it is necessary to consider
the elastic properties of the airplane. Assume that the elevators are relative-
ly rigid. The angle of attack of the stabilizer will be represented by a character-
istic number et measured at a reference section located at a spanwise coordinate

If the tail angle-of-attack distribution is described by 90f(y), y being

the spanwise coordinate, then q[ t my be defined according to the following
equation:

bt f'' ~ +~ ( Y) C*4 ~ (5-239)
5t 4

t

where c t  is the tail chord length, s t  is the tail semispan, and St  is the

tail area. Hence et  is the weighted average of the tail angle of attack. If

a semi-rigid mode f(y) of the tail twisting is assumed, 17t ca i be evaluated

at once. Generally, it may be assumed to lie at 2/3 to 3/4 semi-span outboard
from the fuselage.

The elastic property of the tail and fuselage may be described by two stiff-
ness-influence coefficients K1  and K2 defined as follows. Let K1 be the

total lift force (with K1/2 acting at each of the reference sections on the two

halves of the horizontal tail), that is required to act at the tail aerodynamic
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center to produce a rotation of 1 radian at the reference section, (actually
only small deflections are of interest and the linearity of the structure may
be assumed), with the fuselage assumed clamped at the airplane c.g. Let K2

be the total pitching moment (with K2/2 acting at each reference section)

that is required to act at the tail reference sections to produce the same rota-
tion. Then the total change of the tail angle of attack due to a lift Lt act-

ing at the tail aerodynamic center and a twisting moment Mt about the aero-
cynamic center, is

Gt - L t + Mt

K1  k(5-24o)

Using the strip assumption, one may write the lift and moment induced by a
small deflection angle 6 of the elevator:

0'j + _C ( )t ](-241)

M - St Ct (5-242)

where qt is the dynamic pressure at the tail, at is the lift curve slope of

the tail, is the eltvator derivative of the tail airfoil section. The

derivative m must be considered more carefally. In ordinary situations only
the aerodynamic moment acting on the stabilizer contributes to the twisting of
the stabilizer, the contribuion due to the pressure distribution over the ele-
vator being resisted by the control stick. Hence

C _ _ .2C_. (5-243)

where CM is the coefficient of the pitching moment about the tail aerodynamic
Ct

center, CH is the hinge moment coefficient, both based on the tail area and tail
chord. t

On solving equations (5-240), (5-241), and (5-242) for )et/), and computing
in turn the derivatives CL /)p and CM/, (the subscript t refers to tail),

the pitching moment (about airplane c.g.) derivative ZIbN can be computed.

The result may be posed in the form (.3ee Reference 58, page 150).

I- t
Elastic efficiency of elevator = / (5-244)

where

K, (5-245)
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It'r'l + 0- ?(5-246)

t is the mean herodynamic chord of the tail.
t.

The dynamic pressure qt is the critical divergence pressure of the
div

horizontal tail at which an infinitesimal change in P induces a large tail
twist. If K1  is negative, itd has no physical meaning, but is merely

div
a parameter showing that the tail is stable. The dynamic pressure qt de-

rev
fines the critical horizontal tail-control reversal speed, at which a change
of elevator angle produces no change in the pitching moment about the airplane
c.g. Note that qt is independent of K, , because at the reversal speed

rev
the tail lift due to elevator deflection vanishes. Since m is in general small,
q 't Is in general very high.

rev

The effect of elastic deformation on the longitudinal stability may be
estimated under the same approximation. The static longitudinal stability is
measured by the derivative 6CJCL at the symmetric level flight condition,

where CL is the total lift coefficient and CM  is the coefficient of pitching

mcment about the airplane c.g. An airplane is statically stable when V )CL

is negative. In power-off condition and for the rearmost c.g. location, a value
of - C L  from 0.10 to 0.15 usually leads to satisfactory results.

As CL  is contributed mainly by the wing and CM  mainly by the horizon-

tal tail, the above derivative may be computed by evaluating the change of CM

and C following a small angle of rotation at the airplane c.g. In the stick-
L

f-Ixed condition (elevator locked), the effect of elastic deformatton of the wing,
tail, and fuselage may be written in the form (See page 153, Reference 58):

~ = k~)"J'; +.. ~ \ (5-247)

where, for unswept wing and tail,

_ _ _ _ ,d_ _/_ - 1_
_Z C t ( 5-24s)

In this equation (is the distance from the airplane c.g. to the tail lift vector
through the tail aerodynamic center, and the subscripts w and t refer to wing
and tail respectively. Equation (5-248) shows that, for an aeroelastically stable
aitplant the effect of elastic deformation on /CJ CL depends on the relative

magnitude of the divergence dynamic pressures of the wing and tail. (For wing
divergence, see Section 2.2.1.) One might remark again that for most config-
urations qtdiv  is negative.
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The effect of elastic deformation on the longitudinal stability of swept
wing aircraft is quite sensitive to the deformation mode due to the shift of
center of pressure. For such an aircraft a more detailed study is recommended.
(See Sections 2.3, 2.3.1, 2.3.2, and Refs. mentioned therein. See also, Ref.
59, p. 474.)

5.7.7 Simplified Estimates of the Static Aeroelastic Effects on the Lateral
Stability and Control.

The static aeroelastic effect on the losses in lateral control and stability
may be estimated simply when the one-degree-of-freedom rolling motion is consid-
ered. The rigid-body equation of motion, equation (3-69b) reduces to the form

KA o d - _LC 2 1 = ALC(5-249)

The forcing function C1 to be considered here is the rolling moment due to

the deflection of aileron and the elastic deformation of the wing. Let

b = total aileron deflection, deg.

F= twist at wing tip, deg.

L rolling moment, ft. lbs.,

= , - Cc

then

KIO A - AC4  A.~(c~~ (5-251)

1+ s now desired to eliminate E by proper modification of the coefficients
KA , Ct , and Cj . The twist at the wing tip, e , can be written as an in-

p *
finite series (Reference 61) according to the method of successive approximation:

E" = e, +e. -t , . . (5-252)

in which E is the twist resulting from the applied aerodynamic forces and the

wing inertia, E2  is the twist caused by the load due to E1, E3 is caused by

the load due to 62, etc. E can be expressed as a linear combination of the

various angles of attack and accelerations:

E 4 s, + - (5-253)
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By assuming that each succeeding twist is proportional to the preceding one in
the series

S- = - V (5-254)

then the series for e becomes a geometric series whose sum is

(5-255)

This may be identified with the well-known equation (equation (2-9), Section
2.2.1). E I I

v(5-256)

where is the divergence dynamic pressure of the wing. For sweptback

wings qdiv may be a negative number.

The deflection pattern across the span due to the three causes: the aileron
5 a the rolling damping p , the rolling acceleration p , may not be the same.

Correspondingly, the induced aerodynamic rolling moment due to these twisting
modes may be different. Hence it is appropriate to replace the last term in
(5-250) and (5-251), by

C E -- _

gcE = -V I~ke £U ) + (C e (5-257)

The ratio w is rather insensitive to the twisting mode and can be computed by

an average mode. The rolling moment coefficient due to this average mode is
denoted by (C* )

A combination of equations (5-251) and (5-257) leads to

(kA - _ -QA-E ) A -4_ ( C -t -CA-!) -

4~- .(C, + (5-258)

which, in comparison with (5-249) shows the proper way of modifying the coeffi-
cients KA , C , and C 8 5a for elastic deformation.

The derivatives (C00)6 , (C1  ) , (C,,). can be computed for a given wing

configuration and spanwise twist angle variation by standard methods (see Section
2.3.4). For a crude estimation, one may use the approximation:

(c • CR) C(, (5-259)

To compute the coefficients p, and E. , Rodden (Reference 61) intro-

duces an aeroelastic parameter r. which represents the twist at the wing tip

corresponding to a unit rolling moment. It is an influence coefficient indepen-

dent of the magnitude of the applied forces which relates the wing elastic pro-
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perties with the spanwise distribution of aerodynamic load. For a given wing
rigidity it is only a function of Mach number. Since load distributions are
fairly constant in the subsonic and supersonic regimes, the value of UE/6L can
be found from a subsonic and a supersonic value and faired through the transonic
region. From the computed values of C/&L the derivatives are obtained:

4 LS ~ S (5-260)

-) C,. S 6(-21

S(5-26 )

The inertia coefficient E. is a constant corresponding to the given r-iJdity
p

and mass distribution and is the value of tip twK't for a urlit xli.ing accel- :1
eration.

on setting - 0, the ratio of the steady rEte of rolling to that of a
rigid airplane is obtained

LS L ) 6 
(5-263)

+I

The reversal condition is obtained by the vanishiri, of p . Fra- (5-263) one
obtains:

1 r) (5-264.)

s (- M'

If the approximation (5-259) Were used (5-263) is -riplif-id into

i.e.,, the Well known approximate formula

S I - -. (5-266)
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NOMENCLATURE

a,b,c = points on an airfoil as determined by the wake locations

a = speed of sound in air

0

AR = aspect ratio

b = semi-span; airfoil semi-chord

b 0 = chord at midspan
B

c = chord length

ci M section lift coefficient

c W quarter chord moment coefficientm

CL - lift coefficient

C(k) = Theordorsen function

e(x)d = deflection curve

EI = local bending rigidity

a generalized rigidity constant

FI(t) = generalized bending force

F(k) a the real part of C(k)

g = kernel function

G(k) = the imaginary part of C(k)

h = kernel function; bending deflection of the elastic axis, positive
downward, feet

k = reduced frequency

A = characteristic length

L = total lift per unit span, rolling moment

m = mass of aircraft

M = total moment per unit span; Mach number

p = roll rate

p = aerodynamic influence matrix
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q = pitch rate, dynamic pressure

r = yaw rate

R = radius of curvature; hyperbolic distance which is a function of
and v.

S = wing area; domain of integration

u = Ingitudinal perturbation velocity

U = true airspeed

w = upwash velocity

w = downwash function

x b

x,y,z = body axes in steady flow configuration

yy

z - normal force

= pitching about the elastic axis, relative to the direction of flow,
positive nose up, radians; angle of attack

= angular deflection of aileron about aileron hinge line, relative to
Wing chord, positive for aileron trailing edge down, radians; sideslip
angle; Prandtl-Glauert factor

= complex amplitude of dimensionless pressure jump across a two-dimension-
al airfoil; ratio of specific.heats; Euler's constant

r = wing dihedral angle

5 = angular deflection of tab relative to aileron, positive trailing edge
down, radians; transverse body dimension, (for example, maximum body
diameter or wing span)

M downwash angle; twist at wing tip

= complex number representing airfoil motion

e a pitch angle; cos
1

d

S = sweepback angle

relative density factor

= dimensionless coordinates, measured positive downstream
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lo °  = air density

= non-dimensional time parameter

= COSiw

CM(' - indicial functions

9Cq

= Sear's function

I+ = velocity potential on the upper surface of a wing

f(f) = Wagner's function

*c( lift function

* ( ) - Kussner's function

= angular frequency

w f = fuselage natural frequency

= independent frequency parameter
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APPEND)X 5A

Solution of lifting line integral equations. The equation to be solved
is of the form

Is

In 5.2.3 (3), e.g., g(j) = f(n) x S) and h(j) - f(j)

While in 5.2.3 (4) g() = f(j) xl( , S) and h(Z)

is given by the right hand side thereof; in both cases E(q) denotes the
ratio of the chord at station i to the chord at -0.

Introducing the change of variable

r Cos G 7T=(2)

it is expedient to pose the solution to (1) in the form

()8 ) Zs- o s n ) (3)
r7 %-

Multiplying (1) by (2/A) ( ) sin(me) and integrating over (0,K)

there results the set of simultaneous equations

rrem C-= a. -bin (4)

fl: I
where

cMnn ='-j( (Mssneo 5, 1 r~e , (ne)ci (5)

.ir

b : _ =(s cos 0)h(s cos 6)s,n( e)de (6)
0

In the particular case of an elliptic planform
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(5) reduces to

and (3), (4) and (6) yield

U5COS 6)9 (5 C 05 &:~ 'sn~~,1~
o (9).

The exact solution (9) for an elliptic planform suggests that an
approximation for non-elliptic planforms may be obtained by neglecting C
for m A n in (4), with the end result

"= o (lo)

where
Tr

aFW. S (ii)

The further approximation X n = 1 may be involved for planforms that are

approximately elliptic (e.g., a moderately tapered wing).

The approximation (10) may be regarded as the first step in an iterative
solution of (4) following the pattern

M T 1i + [6~L Q_ (12)

where r denotes the order of the iteration, and the prime on the summation

indicates that the term n = m is omitted. Setting a( ) - 0, the first
approximation is given by n

- (IC) -iYM 01 = 0+YnC"M r (13)

which leads to the result (10). The approximation (13) then may be substi-

tuted in (12) to obtain m-1a(2) etc.
m

A method of solving (1) without resorting to iteration has been set
forth by von Karman and Sears (References 53 and 54).

The evaluation of the last integral of 5.2.3 (4) leads to (in addition
to more elementary integrals) the consideration of the integral

j 5 C (Cos 9'Cosa)
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(b) lTCo 5e,. CosO I(co5e cose)cos(O)&Ico6~~Ose,1

(14b)

It has been shown by Reissner and Stevens (Reference 21) that

IF,,= (21 r)5,n(,G) (3)
while I(b )  is given by

n

(b)
I =z[2,,J15e,, 1+ lo..--]iJ,ne- 2 (o- )Co (6

' (16a)

(16b)

for n - 1 and 2 satisfies the recursion formula

------- (1 6 c)

for higher n
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APPENDIX 5B

Lifting surface integral equation for supersonic flow. The integral
equation relating pressure distribution and prescribed downwash may be
derived by inverting the result 5.3.3.(2), in which -a is replaced by the
z derivative of a velocity potential, defined such that (regarding z as

dimensionless for the moment)

(2)

It may be shown (Reference 39) that a valid generalization of 5.3.3 (2) is

Tr 2
ZZo+ (3)

where now 2- 2-_ 7- (4)R

and the integral is carried out over every part of the plane z = 0 for
which ' z has a non-vanishing value and R is real. As shown in Figure

B-l, this includes points off the wing. It then follows, since and z
must satisfy the same, linear differential equation, that

r-I
WA 2Tk5517 (5)
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*

Figure B-i. The Domain of Integration for Equation (5).
The Mach Lines Springing from a and a'
Are Tangent to the Leading Edge at Those Points.

An integral equation relating the velocity potential ' on the upper
surface of the wing to the prescribed downwash then follows from the substi-
tution of (5) in (1). If the order of differentiation and integration is
formally reversed, the result may be placed in the form

~ ~ / /on wing(6

where g denotes the kernel

_° _(7)

The actual evaluation of the integral (6) is complicated by the strong singu-
larity in g , as given by (7); this difficulty may be circumvented by inte-
gration by parts or by adopting Hadamard's (Reference 53) convention of dis-
carding the infinite part of the integral.

The region of integration for (7) comprises those portions of the plane
z = 0 for which the radical is real and 4 does not vanish. But, in virtue

of considerations of symmetry and continuity, the velocity potential (
0+) must vanish over those parts of the plane z a 0 not occupied by the
wing or its wake; accordingly, if the wing planform in question has no sub-
sonic trailing edges, so that the wake cannot affect the wing, the result (6)
is an appropriate integral equation for 0 . If (6) can be solved for f , the
subsequent calculation of the pressure distribution follows from (2).
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Those planforms having subsonic trailing edges require (6) to be mod-
ified in consequence of the fact that it becomes necessary to consider points
in the wake, where e is not prescribed. It then is expedient to develop
an integral equation for 7 , which must vanish everywhere on z = 0 except
across the w" g alone. As a first step toward this end, + may be express-
ed in terms oz' 7 -viz.,

and substituted in (6) to obtain

jo 'R)YY' (9)

Integrating (9) by parts yields

where

(11)

The result expressed by (10) and (11) also is improper due to the implied
interchange of differentiation (with respect to z ) and integration, and
the remarks following (7) are again pertinent.
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Appendix 5C

Examples of Effects of Unsteady Flow on Airplane Dynamics

The earliest investigation of the effect of unsteady flow (as against quasi-
steady flow) or airplane dynamics seems to be Weissinger's studly of phugoid mode
(Reference 145, 1941). He concludes that sizable error may result by the quasi-
steady approximation. Goland, (Reference 62, 1949), using simplified equations
of motion, and restricting attention to the longitudinal, stick-fixed, short-
period mode, shows that considerable error in the calculated stability roots may
result when approximations of the quasi-steady variety are made.

Other investigations lead to similar conclusions. Smilg (Reference 64)
studies the one degree-of-freedom pitching instability of an aircraft and shows
that the quasi-steady approach fails to disclose the presence of an instability
of this kind. Walkowicz (Reference 65) studies the response of an F-80 airplane,
taking into account the effect of compressibility, elastic distortions, and the
unsteady flow effects, and demonstrates the importance of all these considera-
tions in determining the stability behavior of the airplane. On the other hand,
Statler, (Reference 117) readies the conclusion that quasi-steady approximation
is adequate for studying the longitudinal stability of an F-SOA airplane in
subsonic flight.

Statler, in a very exhaustive study (Reference 56), maintains it is danger-
ous to ger-ralize the importance of aerodynamic lags on the basis of a single
numerical example. So large a number of airplane parameters become intricately
involved that their relative influences are practically inseparable. For F-80A
airplane, which is a conventional, high-speed, straight-wing fighter, his con-
clusion is as follows. The long-period, stick-free modes of F-90A have reduced
frequencies of the order of 0.01 - 0.02 which are comparable to the reduced
frequencies of the short-period, stick-fixed modes. The dynamic similarity of
these two cases is due to the fact that the elevator characteristics have very
little influence in the former and do not enter at all in the latter. Although
unsteady fla. considerations have considerable influence on the damping of the
short-period, stick-free modes, (reduced frequencies of order 0.13), apparently
they have relatively little effect on the long-period, stick-free modes. The
general conclusion is reached, however, that due to the relatively high fre-
quencies involved, a precise estimate of the response of a control surface
should include unsteady flow effects. Thus unsteady aerodynamics should be
considered in an autopilot design, but may be neglected in the evaluation of
handling characteristics and maneuverability of the airplane.

A number of examples worked out in Reference 69 by Goland, Luke, and Sacks
show that unsteady flow effects do not play an important role in the stick-
fixed, short-period modes. However, all the airplanes examined have well-damped
stability mode. For aircraft with marginal stability, it is expected that the
effect of unsteady flow will increase. An example of a tailless airplane shows
the large influence of unsteady flow effects. All examples show the import-
ance of unsteady flow effects on the longitudinal, stick-free stability modes.

Lateral dynamic stability was studied by Goland, Hager and Luke, (Reference
70). For the cases calculated it is shown that the neglect of unsteady air
forces in the stick-free lateral stability analysis leads to a stability pre-
diction that is unconservative, (the predicted stability being greater than that
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I6

found from unsteady theory). In the incompressible flight speed range the ob-
served effects are relatively small, but the error increases with increasing
rudder aerodynamic balance. It is also found that the wing contribution to the
unsteady mechanism is negligible and only the quasi-steady coefficients need be
considered. In the majority of the cases studied, the shift in the stability
mode afforded by the inclusion of unsteady theory could be predicted from a know-
ledge of the shift induced in the simplified lateral systems (, 8r i.e. yaw,

rrrudder) and ( , r, 8r, side slip, yaw, rudder). At flight speeds requiring

compressibility considerations similar trends are observed, but calculations in-
dicate a substantial increase in the error resulting from the neglect of the
unsteady tail admittance. The sidewash lag contributions appear unimportant
in stability calculations.

The work of Ashley, Zartarian and Neilson (Reference 22) was directed at
developing and applying a precise method for computing the low speed longitudinal
response of an aircraft. The method was applied to twenty rigid and flexible
aircraft representing a wide range of parameters. The results show that, in the
short-period ranges the predictions compare well with those of simpler theory,
especially for short tail lengths and large static stabilities.
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CHAPTER VI

AEROELASTIC EQUATIONS OF MOTION FOR AN AIRPLANE*

6.0 Introduction

This chapter presents the derivation of the aeroelastic longitudinal
equations of motion for a flexible airplane by the use of the modal approach.
The modal approach is considerably shorter than the collocation approach dis-
cussed in Chapter III but may be more difficult to grasp initially. The follow-
ing example demonstrates clearly how the mode shapes are used in the derivation.

6.1 Nomenclature

6.1.1 Axis System. The axis system used throughout this example
is illustrated in Figure 6-1 and is called a wind axes system. The longitudinal
(X) axis is fixed parallel to the relative wind when the airplane is in steady,
level flight, and remains parallel to the instantaneous relative wind as the
airplane oscillates. The normal (Z) axis is positive downward. The variables
a, e, 2 , e represent small deviations from equilibrium, as shown. For this
moving axis system, the following relations exist:

6.1.2 General Assumptions. The following assumptions are made for
all analyses presented herein.

1. Flight motions occur only in the XZ plane.
2. The theory of small deviations from equilibrium applies.
3. There is no variation in forward velocity during the airplane

oscillations.
4. The airplane is linear in its response to control inputs.
5. The airplane is initially in trimmed, level flight.

* This example was taken from Convair Report N. FZA-36-271 entitled "An Im-

proved Analytical Method for Predicting the Longitudinal Dynamic Response
Characteristics of the B-36D Airplane and Correlations With Flight Tests",
by Marx, H. F., Uchimoto, W., Zant, W. L. This report presents in detail
a comparison of the results obtained from this method of analysis with the
experimental results obtained during a Convair Flight Test Program. Simpli-
fications of this type analysis are also shown (e.g., separaion of equations
of motion into the high frequency and low frequency portions and then linear-
ly superimposing the results to obtain the overall response; methods for
simplifying the kinetic energy expressions.)-
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6.1.3 List of Symbols.

Z vertical displacement

a angle of attack

e - pitch angle

y = flight path angle

normal-mode coordinate, normalized on wing tip
deflection

S normal-mode coordinate, normalized on wing 
tip

be = elevator deflectione

t  = tab deflection

= servo input = amount of input tab deflection which
would result if the elevator is held fixed

.th
qi t generalized coordinate

S air density

U true airspeed; potential energy

2M
A

= relative density factor = /

t = time

k - airplane radius of gyration in pitch = Ry IMA

2k
K = reduced radius of gyration in pitch = 5-y c

S number of half-chord lengths traveled in t

seconds = t
C

AR = amplitude ratio

= phase angle
d C d

D = differentiation operator =C

WADC TR 55-173 311



q = dynamic pressure

17 qh = dynamic pressure at tail

= frequency in rad/sec

ci - natural frequency of normal mode ' i rad/sec

a), natural frequency of normal mode 5 2 rad/sec

T = kinetic energy

W = work

L = lift
th

P = generalized force1

E = downwash angle
d4G

V = linear velocity

M = Mach number

M a mass of airplane minus mass of elevator and tab

MA = mass of airplane

My generalized mass of airplane for normal mode 5 I

M generalized mass of airplane for normal mode

m mass of elevator

e

mt = mass of tab
t 

th
mf = fuselage mass at i fuselage station

1 t

in = mass of jth wing stripW.

eEk mass of k
t h engine

I = moment of inertia in pitch of that part of the
a airplane represented by M about its own c.g.

a
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I = airplane moment of inertia in pitch

I = moment of inertia of elevator about its c.g.e

I - moment of inertia of tab about its c.g.
= j~th i

I j moment of inertia of j wing strip about its c.g.

'th = - moment of inertia of tab about tab hinge line

2

- It + mtxt2

eh' I !e + mexe2  + 41 t +-mt (g + 2xt) 2

e '  le + mexe (lh + xe) + 21t + mt (g + 2xt) (lh+ g + xt)

It  th + mtxt (g + lh + xt )

Ith 2 t +mx (g+xt

J i if1 qf + im (1 d) (qw. + d 4w )
n i i ni j w + w nj wj nj

+II w~ I'w Fm (%E + dE ) ((PE + d E *E
jI jnj k k(k k nk k nk

+ le*T  + meqT" (i h + xe ) + It*T + mtqT' (1h + g + xt )

n n n n

l = leT + mexeqT" + 2 1 t*T + mt T n (g + 2x)fnnn n n

t~n It*Tn + mtxt qT'

m x + mt(g + 2 xt)mee

S = wing area

'. = area of jth wing strip

s = area of horizontal tail

s = elevator areae

c = mean aerodynamic chord

X = longitudinal distance between airplane c.g. and
e.g. mass M a, positive aft
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x distance from elevator hinge line to elevator c.g.,

e positive aft

xt  = distance from tab hinge line to tab c.g., positive aft

g = distance from elevator hinge line to tab hinge line

c = r.m.s. elevator chord
e

I = distance between airplane c.g. and elevator hinge line
ht

f. distance from airplane c.g. to i fuselage mass station

I longitudinal distance from airplane c.g. to elastic axis

-th
at j wing station

1 e longitudinal distance from airplane c.g. to wing elasticek axis at kth engine station

d longitudinal distance from elastic axis to c.g. of jth

wing strip

ekd I  gitudinal distance from wing elastic axis to c.g. of
e k k U engine

f = modal fuselage linear deflection coefficient
fmodal wing linear deflection coefficient at elastic axis

cE wmodal engine linear deflection coefficient at wing elastic 

axis

cPT modal tail linear deflection coefficient at elevator hinge
line

IT modal tail linear deflection coefficient at .g. of tab mass

PT" modal tail linear deflection coefficient at c.g. of elevator

mass

*w modal wind torsional deflection coefficient

*T = modal tail angular deflection coefficient

N modal nose angular deflection coefficient

= modal engine angular deflection coefficient
EL

CL = lift coefficient = L

C = pitching moment coefficient q
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Ch elevator hinge moment coefficient Elev. H. M.
qhSeC e

C = tab hinge moment coefficient Tab H.M.
h t qh se e

Z,} Z*&~~P~

DCj Asj O-17mj
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Subscripts

A airplane

a airplane less elevator and tab

h horizontal tail

T tail

N nose

( ( )8 + ( )8
e te.g. center of gravity

th
n n normal mode

f fuselage

w wing

E engine

t tab

i fuselage mass stations; generalized coordinates

wing stations

k engine stations

y pitch axis

( ' ) t ( ddifferentiation with respect to time, except

otherwise noted
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I-H
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fill.
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6.2 General Longitudinal Equations of Motion Including Two Normal Modes

In this section will be derived the general equations of motion for a
flexible airplane, represented as a five-degree-of-freedom system. The degrees
of freedom consist of the variables % £ est se, ;I, , and '? where S,

andg are normal coordinates representing two normal modes of vibration of the
airplane. The method of Lagrange will be used to derive these equations of
motion.

Symbols for the pertinent mass, inertia, and dimensional quantities are
defined in the Table of Symbols.

The kinetic energy of the system may be expressed as

T = Tf --T w  +Tc. +Te .T (6-1)

where the subscripts fW,E*, e and t refer to fuselage, wing, engines,
elevator, and tab, respectively.

By computing the angular and linear velocities of each mass element
(Figure 6-1), due to all of the coordinate velocities, it is seen that

14 -zt-t P (6-2)

+4 z)+ dw'Y)wj tJ L2V'G* W.J ~'Ywa W 2)2 (6-3)
JJ

1K\ 
(64

(6-5)

Equation 6-14 describes an aircraft with radial engines. However for an
airplane using large axial flow jets in or below the wings, the mass point
approach might not be a reasonable assumption. In this case it might be
necessary to also include the kinetic energy that is a function of the
moment of inertia of' the jet engine.
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If the elevator-servo tab gear ratio is 1:1, the tab deflection
may be written as

St zSe +a (6-6)

where Q is the servo input. Therefore, the tab kinetic energy expression
becomes

17:'ItO+~ 2~~ (6-7)

The analysis proceeds by expanding the quadratic factors in
Equations (6-2) through (6-7), substituting the results into (6-1) and
collecting coefficients of all the resulting terms.

It is noted that all cross-product terms involving products of
the normal coordinate derivatives ( S 2e ) vanish from the final kinetic
energy expression Equation (6-1) because of the orthogonality condition
which exists between the two normal coordinates; that is,

4- Yn d Osj T2J (6-8)

where the summation process is performed over all the mass elements zompris-
ing the airplane.

The kinetic energy expression then becomes

T = + 3 (6-9)

Note: Equation (6-9) is continued
on the next page.
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+1* 1- ZEK( EK d)4Me( 11.AYe)+mZ 2+~X~

+Ii;~[Z71f4I4 + Ynwn

+ 7- E&WrK±E g.d Ov E E

Ivi,

K' EK nK Et

+ ~(2 ± j -wj Pw")i +lwj I4W, +I~Yr

KK

Note: Equation (6-9) is continued
on the next page.
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++
I,]

(6-9)
+ YJ q 

i-

Scrutiny of the coefficients in Equation (6-9) reveals the following:

Coefficient of I VZ 2 mass of entire airplane = MAfI
Coefficient of 1 0 pitching moment of inertia of

airplane about its c.g. = IA

Coefficient of'l n 2 generalized nass of n mode = Mn

Coefficient of VZ = static mass moments about airplane

c.g.

0, by definition of .c.g.

Coefficient ofof mass times linear de-flection, in nth mode, performed

over entire airplane

0 for each of the "n" normal modes

If the following symbolic notations are assigned to the remaining coefficients,

I' e coefficient of Ii2

Ith = coefficient of 1 Q
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J n coefficient of Sn

I' coefficient of ee e

n = coefficient of e n
coefficient of Vi e

coefficient of v

ith = coefficient of e Q

V coefficient of Q

It n

then the kinetic energy expression becomes

T-- * MAVz+, f ^ I A 6 a ,+m 9+ T
It Z h Q tT . e I, + e "

T.Z E)-Y (( e + I ,£

(6-io)

+ e ic~a +,

The potential energy of the system may be expressed as a quadratic
function of the two normal mode coordinates and the natural frequencies of
these modes.

T TR (6-17)
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Equation of Motion in Variable z:

Lagrange's equation for motion along the Z axis is

P 2l~~' (6-12)
dt

From Equation (6-10)

But since

M' [~ U 99) teS. M,&A, (6-14)

From Equation (6-11)

(6-15)

The generalized force PZ is the work done by the aerodynamic

forces in a virtual displacement AZ.

That is, . W - L.? (6-16)

and P A LL
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where L represents small changes in lift from that at the equilibrium
condition.

L. - (6-17)

~e aLe a L2-

Therefore

+CL 'r2CL 6 + CL e+C (6- )

It is convenient at this stage in the derivation of Equation (6-12)
to define a non-dimensional time variable

S- t (6-19)

Therefore,

_-_ - U (6-20)

* It should be noted that the rate term coefficients are equal to 2U times

the dot derivatives. c
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By usiy.g this non-dimensional time variable and by substituting bt = 5e + Q

in the expression for P the equation of motion (from Equations (6-12), (6-14),

(6-15), and (6-18) becomes

(n cL?, ){(ACLDIX 0D~ (- ~+CL~) De

ri _ CLP D-CL Se + L Dq - LsFz)

(6-21)

c,) D +CL
where

?-C=zrIA
Cs.

and

CLLj :CLVSe + CL0 8

C :CL8 e -- C i

Equation (6-21) may be written in simplified form by assigning
symbols to the coefficients of 51, a, De, be 'T2 and Q as follows:

(s, D2* ) (6,a2)
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where

a3 :-CLf

" ' =-2ZA CLve
sc

alo C

a, 5  cL..
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Equation of Motion in Variable e;
Lagrangeis equation of motion n variable 9 is

Lare n fmtini
T U P (6-23)

From Equation (6-l0)

+j o j +J I se+Jt (6-241

and

:0t (6-25)

The force P6 
=  aerodynamic pitching moments about the

airplane c.g.

Pe

(Q)+Crn2 rn J 4 *+C

- 6-P-6)

Upon substituting Equations (6-24)y (6-25), (6-26), in (6-'23) and changing

to the nondimenional time variable 
s, the equation of motion in variable 

e

finally becomes
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Tn- U C, P-C C

De + 2~i-c , (6-27)

where K z reduced radius of gyration in pitch.

Equation (6-27) may be written symbolically as follows:

(b,Da + b) b)- + bc±o(b, OLb+ D (b D-~o

+ (b 4 D2 b D+ bj b., D 2 *b~)Q (6-28)

where

b, (-

bz=-Cms.o,

b3 -Cml

b5DT - Cr 328
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bfj

bg =

bo C$

b13 =crSt

bi 1 s(C A fo*

Equation of Motion in Variable be

Lagrange's equation for the variable 5 ise

'Tl (6-29)
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Again from Equation (6-10),

Q~4~ Iehe e -- ~

(6-30)

and Oan e  (6-31)

F)e C aerodynamic moments about the elevator hinge line.

Therefore,

p c Se t ceg + -cp'6t +N/1 tcht

h : gt+C~te e(6-32)

C iI

"CtA -h 'j +Cy ciY-+hSI+ h

By substituting Equations (6-30), (6-31), (6-32), into (6-29), by changing
to nondimensional time variables and by collecting terms, the equation of
motion in 5e assumes the following form:

[ (A5 C Of # +Cht330(C tc
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+ (+Cht9h, 
0(

+ ( I (6-33)'r)i + C i p D

1113

+YD CoL Il C YLS5ece c~ ~

Eq~u~ti~f maybe rittenl symbolically as follows:
E q u a t i o n-C ( 6 -3 3 )e 

(6 -3

where

C, ~ z

C 3  = C - C t Y

C5
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(2eCe

- ,SeCekC/ ~

c8 ssce c /,

-Ch I

3 j c h S e C4 -

hc(:a )2.
C1  C i-D Cht~

C, qheCe \ c
CIS =-hoy -c

Equation of Motion in Variable

In the previous manner, Lagrange's equation for the variable
m ay be w r itten -a - T -, L P ' 3 1 (6-35 )

and as before, from Equation (6-i0),

-n y 0 4 (6-36)
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Upon changing to non-dimensional variable s, Equgtion (6-36) becomes

dt~L~ ( )
+ 2T (6-37)

From Equation (6-11)

N M uLry (6-38)

F~. z aerodynamic forces associated with deflection inL~ the coordinate.

1r

+a (CLh,, 4 T [(CL). (Li} + + (CL , ~-

+ CL ~De+( LS) e (Ch + 1C '
(6-39)

A detailed explanation of the above expression is given later.
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Substitution of Equations (6-37), (6-38), (6-39) into Equation

(6-35) yields the equation of motion in S, which may be symbolically

written as follows:

where

L-D- Xc't)T- (c )w,

7o M5,
( -E-()CL)T (L Yi
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-fz=(CLDS)T

F3(CLtT-

+iS -(CLPOr,)T (CLD.Ya)Wj

In a similar manner, Lagrange's equation 
for the 2

coordinate is found to be of the form

where

5  (I)(C L~) (CL c.()Wa

h: h T=-R (9 3
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~ ~ - (CL~)

, t4 -~

g,~ ~ ( F (LD )

2.2
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The final equations of motion, then, become:

b .Dt b.) 4 4(bPI br)o( +. (b. + b7 )P9+ (b,9 D'- Ix, D bjt

(cJ-a~),+(CID+C 5o~ r)Tp( +C ['

(g&img 3) i + (94 DtgS N + (0 9 ,D'- D+9

(6-4 2 )
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6.3 Derivation of the Generalized Forces for the Equations of Motion

in and 5, Coordinates

The generalized force for Lagrange's equations in 5 1' is

P a. (6-43)

Let CW = incremental work done by the aerodynamic forces in a

virtual displacement A 1, from the equilibrium condition.

Then CM = r TT1 AS + (X L" t'wij) A 1  (6-44)

Then LT  = incremental lift on the horizontal tail

-= vertical deflection of the horizontal tail (at the
1 elevator hinge line) per unit deflection inT, (See

Figure 6-3).

th
L = incremental lift on the j strip of the wing.

- vertical deflection of the wing elastic axis at the jth

wij strip per unit deflection in Sg(See Figure 6-4).

Therefore,

P,"=LT(T, t- ,L w {::w,; (6-45)

The lift on the horizontal tail may be expressed as follows:

~ 5~[(c.~4~+ (C L~)~ (CLTl)Tr'l t(CL 2)

+ ( LJ (1-Ea -t(C-6()(C e6 ± (CLge Je (6-46)
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Upon changing to dimensionless time variable s and substituting 8 8 e +

the contribution of the horizontal tail to Ps , becomes

.th

/TD +(CLC~)e) e ,(c))O& (6-47)

+(C L)S)TDSe + (CLJT, 4 CL D

The wing contribution to the generalized force P. will be considered next.

The lift on the j strip* (Figure 6-5) of the wing may be expressed

in the following manner

. (6-48)

Now

CX (CL~ ~S

where (CL )W lift curve slope of wing
a.th

and 6S. area of j strip wing.

Also,

-___. WJ (6-5o)

This is an application of strip theory and constant spanwise load distribution.
However, methods for varying the spanwise loading distributions may be applied
to equation (6-48).
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q; F U SE L A6&

______Wimc- CLAs11c )

owj.Y

TYPICAL WMN& BENDINCG MODE

LILM-C E .LII* _D_________

tMw

WING TORSION AT TIPICAL C:RO5S SECTION

Figure 6-4. Wing Bendinlg and Torsion
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Since

, VV; Wi F,(6-51)

Equation (6-50) becomes

(C L) (6-52)

where -, = change in angle of attack of the jth strip of the wing (due

to wing torsion) per unit deflection in 5 i(See Figure 6-4).
Similarly,

L w l ( C V W W Z (6-53)

Next consider the damping term

BLw,; j- aLw_ a ,,,,,j (6-54)

C 0('W

where c'. may be expressed as

(6-55)

U being the airplane forward velocity. Therefore,

(C Lcx)w kp (6-56)

By changing to non-dimensional variable s,

" " " -(I., q A.,sj (6-57)

By a similar procedure, it follows that

Lj (6-58)
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From Equations (6-7), (6-10), (6-11), (6-15), and (6-16) the total incre-

mental lift on wing section "J" becomes

+ x 4)2 D2 S D (6-59)C j

Hence, the wing contribution to the generalized 
force Psl becomes

"1J-

DC -. o~ (6-60)

Or, by using symbolic notation,

IL C C:cO1&±~

(6-61)where % Z A. j). . ,j

,,,
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By substituting Equation (6-5) and (6-19) into Equation (6-3) and
by defining the following new dimensionless parameters,

IL 5 h (r,

(cLQ(c (LO

C c, 5  $r,L 3)W,~c

The expression for Pl may finally be written as follows:

+ [(CL ).r+ (CL-Y)WI + [(CL D t. (C LP~~ jU Sz

+ I-(.XCL*) (CQ. .lk +(CL r)Da (CLD q )TD

t (C Lj)$.e+ (CLOS)rD'e +(CL~t)TA t (C L DS) Dq~

(6-62)
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In a similar manner, the generalized force P for the equation
Y2

of motion in5 2 coordinate is found to be

i =SZA 7  [LyO)Tt(CL,)Vj] [&oy,)r D -I
[(C~

~~~C +~dL j' 4(CL L-)TD*(

t LI) Se +(CL.,)D e (CL ~t (6-63)

where

(CLD,)WZ~ L$J CJAI/

91h sh 072.

Sh O rt

(cL )W2 Z, A Oo.
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6.4 Derivation of Normal 
Mode Derivatives

For the following derivations 
of the normal mode derivatives, 

refer

to Figures 6-2, 6-3, 6-4 
and 6-5.

Derivation of C and C

Since

114r,(6-64)

(CL T ( I )4r ' r ),(-5

and

CL~ 9 I I Ac15 (C Ly~, (C (6-66)

Therefore,

CLV (CL)T ±(6-67)

Similarly,

Derivation of CLDS I andCLD 2:

The lift on the horizontal 
tail due to is
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Therefore,

( L ) =(CLC)T (6-70)

Upon changing to dimensionless variable s, Equation (6-7) becomes

(C L 4 (CL (6-71)

The lift on the wing due to 5 may be expressed as

•C L ) s , L aLLALs(6-72)

Therefore,

(CL&)L (C W .5 (6-73),
SU J

By substituting dimensionless time variable s in Equation (6-i0) and by

combining Equations (6-8) and (6-10), the following expression for C

is obtained: LD

Similarly,

CL~g 1 5(c (6-75:
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Derivation of Cm  and C

Pitching moment about the airplane c.g. due to tail deflection in S,

may be expressed as

)TI 5C Y, (C L, )T(6-76)

where the lift force on the horizontal tail is considered to act at the
elevator hinge line.

If the line of aerodynamic centers is practically coincident with the
wing elastic axis, the wing contribution to pitching moment becomes

(CmT.)wO 5CS-=5 (L )W A vj (6-77)

where 1. = longitudinal distance from airplane c.g. to wing elastic axiswj

at wing station "j" measured positive aft of e.g. (see Figure 6-5). There-
fore, from Equations (6-13) and (6-14-)

C) Zt s (CL..l w (6-78)

Likewise,

C m =CLY.)T T-±iLj Ww2, ) (6-.79)
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Derivation of C mD and CmD 2:

The horizontal tail contribution to pitching moment due to fl may

be obtained from Equation (6-7)

(c (6-80)

and from Equation (6-9), the wing contribution becomes

A (6-81)

By combining Equations (6-17) and (6-18) and changing to dimensionless

time variable s, there results

(c M r 5 4 (6-82)

In a similar manner,

Derivation of C and CDeiv4 .L h 1  - h S2

By equating hinge moment expression,

where = change in angle of attack of horizontal tail due to5 1

I. deflection

*T Sl
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Therefore,

C Ck )T YP. (6-04)

Similarly,

Derivation of C and C

Elevator hinge moment due to damping D1 is

C,,,, D. 1SeCe = (C,)T , 9. S Ce (6-86)

where

u, c 
(6-87)

Thus,

Ch 0

Derived in like manner,

c 11, (6-89)
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Summary Of' Normal Mode Derivatives

Let subscript n 1, 2. Then,

(C L,?)T (= (cf )

(CLIQ =(CL).- + L-l 4,n

SS

Cm(CL ) aLh + 2(CL5) Z )ws4  2

np )r + _______

.aAh ~Tr)
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6.5 An Analysis of the Coupling Between An Autopilot System and Airframe
Elastic Modes.*

Past experience in the field of dynamic stability of aircraft has
indicated the possibility of coupling between the elastic modes (of the
airframe) and the autopilot. This problem has occurred where the natural
frequency of the autopilot was near the natural frequency of the first body-
bending mode of the airframe. The primary medium of the coupling is through
the autopilot sensing elements (accelerometers, rate gyros, and position
gyros), which due to their locations pick up the body bending. The
effect, on the control sureaces, of the aerodynamic forces due to elastic
airframe deflections, also couples the autopilot to the bending mode, but
this is usually a relatively unimportant effect.

For the longitudinal case, the aircraft rigid-body and autopilot
equations are three in number (the longitudinal velocity equation is
omitted, since it contributes primarily to the phugoid motion, which is
too low in frequency to enter appreciably into the autopilot dynamics).
The rigid-body equations may be written in body-axis form as

M('-\f0 ) , W + z Z .e (6-90)

I ezM W+M i- M+N4Ge (6-91)

where M and I are the aircraft's mass and pitching moment of inertia and

be is the elevator input. The remaining terminology is conventional. A

representative autopilot equation can be written as follows:

e +25"(e ( Oe .500 + 3 0O0 0 (6-92)

where e and 6G are the pitch angle and rate registered. by the autopilot'
G G

sensing elements. From the. autopilot equation, it can be seen that the
2autopilot servo natural frequency is W = 1000 or w = 31.63 radians

per second.

Consider, for example, bending mode data, with natural frequencies
for the first two body-bending modes of 30.90 and 53.91 radians per
second, respectively. The first mode frequency is too close to the
autopilot frequency to be safely ignored. The elastic equations to
be included in the analysis are then

+ 2 +0 12di (6-93)

,, • f (6-94)
M2. ( + 2 2C1. + WuZd q2.

This example was taken from J. B. Rea Company Report No. 103 entitled
"Methods for Solution of Combined Aeroelastic - Missile - Plus Auto-
pilot Stability Problem for the RTV-A-5 Missile), by J. P. Zemlin.
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where the subscripts I and 2 refer to the first and second body-bending
modes. The generalized masses M and M 2 depend on the mass distribution

along the aircraft fuselage and the mode deflection curve. For the bend-
ing modes, the M in Equation (3-7) are the lumped masses (including

wings, fins, etc.) distributed along the fuselage at the stations i = 1,2,...n,
and the cik are the relative deflections in the kth mode at the stations

i = 1,2,...n on the normalized deflection curves. If the deflection curves
are normalized at the tail so that cnk = 1.00, for n at the tail and k -

l.or 2, dk gives the deflection at the tail in the kth mode.

The generalized forces Q. remain to be calculated. The forces act-
ing on the aircraft (in the longitudinal case) must be properly distributed
along the fuselage for this purpose. If the forces are distributed at
five stations along the aircraft, these stations will be indicated by the
symbols xl, x2, x3, x4 and x,, representing distances in feet from the

aircraft's nose. These forces are functions of the local a (angle of attack),
the elevator deflection E e' or the local angle of attack at the flap:

x2

(6-95)
F x CL a2*

F = D a4 + E e + CL a 2*
x4

F = H5x 5  e

The generalized force Qk was defined as 5W/5,; in words,

Q is the work done by the forces F in a unit displacement (dk = 1.00)
k' thk=1-0

of the k mode. Since dk is unity, the deflection at any other station

i in the kth mode is merely cik, the displacement at i read off of the

kth mode normalized deflection curve, and the work done in this dis-
placement by the force F is Fx (c ik). The generalized force for the

kt h mode is then

Q = F~~,cfA)+FLz(cx, ) F.(c 3)) i F(cA) F (cf*) (6-96)

* Downwash from the flap; lag may be included by adding a term of the
form Na2, indicating the assumption that a 2 is constant over the lag

interval.
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Since the Fxi are linear functions of ai be' and a2,

Q I ( ., ) (6-97)

where f is a linear function. The local angle of attack a is in turn
given in radians by 

I.

S(x.- XL, )# (CIKd +AL,.dK )
'JV r. (6-98)

where cik is positive upward andX ik is positive in the nose up sense.

( Aik is here in radians). The coefficients for the ai are computed

from Equation (6-98) and substituted in Equations (6-95), which arein turn substituted in Equation (6-96) to obtain Qk" Qk is then a

linear function of w, 4, 8e, dl, d2 , dlj and d2, for either k.

The rigid-body equations will also contain coupling terms from the
elastic modes involving the dk and dk. These terms will arise from

the forces F including only the a. terms of Equation (6-98)
xi

involving the dk and dk (since the forces due to w, e, and 8  are
k e

already included in the stability derivatives for the rigid-body
equations). The normal force equation (6-90) will contain these forces,
times their respective lever arms (xcg - xi) about the aircraft c.g.

Since these coupling forces and moments are linear functions of the
d and equations (6-90) and (6-91) can be rewritten to includek dk, 69) ( 1
elastic mode coupling terms as follows:

MfrVV )sz W+ Z. G + Z4 IO + 20 C94 z+ Z. 4
• z, . z,. . z a, Jz2. di

(6-99)

GaJMhW4M 1.+ +MM*O.M +.M di, 44. + M-1 - MMW e j' a I A a
(6-ioo)

where the coefficients for the last four terms in each equation are
found from Equation (6-95) and (6-98) as discussed above.

The autopilot equation (6-92) will be altered by the fact that
eG is a function of the dk as well as of the rigid-body e. The

sensing elements are located at some station xG on the fuselage; the

pitch attitude eG at this station is given by

a

+ A K (6-101)
WADC TR 55-173 Ka rp
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The autopilot equation then becomes

(6-102)

No mention has yet been made of the effects of unsteady aerodynamic flow.
The rigid-body equations and generalized forces as presented are based on
steady-flow aerodynamics; the possibility of unsteady flow effects affecting
the stability of the system should be investigated, since relatively high
frequencies are involved. The parameter of primary importance in deter-
mining the magnitude of unsteady flow effects is the "reduced frequency"
z c/2V, where c is a length constant (wing chord or span), w is the circular
frequency under consideration and V is the free-stream velocity. If this
parameter is sufficiently small (usually taken to mean less than 0.1) at
the frequency w, unsteady flow effects are negligible at this frequency.

CONCLUSIONS

It is probable, in view of the closeness of the body-bending and autopilot
natural frequencies, that the longitudinal system would be found to be un-
stable, or at best marginally stable. It is of interest to consider briefly
some possible system alterations. Several alternatives exist for improving
the stability of the system; these possibilities include (1) relocating the
gyros-, (2) reducing the autopilot natural frequency, (3) filtering the gyro V
signals, (4) stiffening the structure, and (5) using a computing network to
eliminate body flexure signals. The first possibility would involve shifting
the autopilot sensing elements to a location as close as possible to a
constant-slope point of th first or second body-bending modes (whichever is
found to be most critical), or to a location representing some compromise
between these points. This would serve to minimize the coupling, through
these sensing elements, between the autopilot and the body-bending modes.
Another possibility would be to reduce the autopilot natural frequency to
separate more widely the resonant frequencies of the autopilot and bending
modes. Alternatively, direct filtering might be used on the gyro outputs to
eliminate the elastic mode frequencies from these signals. Stiffening the
fuselage structure would increase the natural frequencies of the elastic
modes and thereby tend to separate these frequencies from that of the auto-
pilot. A computing network utilizing signals from strain gauges might be
designed to eliminate body flexure components from the gyro signals. The use
of strain gauges might seriously reduce the reliability of the system, however,
and any considerable stiffening of the structure is usually extremely unde-
sirable, since in most cases it necessitates extensive redesign of the struc-
ture itself. The use of direct filtering on the gyro outputs is somewhat
impractical, since the first elastic mode natural frequency is very close to
the autopilot natural frequency. The possibility of reducing the autopilot
natural frequency is limited by the requirements for speed of response of the
autopilot, and the possibility of moving the gyros is, of course, limited by
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consideration of the available locations for these gyros. All of these possible
changes could have a direct adverse effect on the overall system stability, even
though the elastic coupling would be reduced.

In general it appears that the most practical possibilities are the relocation
of the gyros and the reduction of the autopilot natural frequency. A combina-
tion of these two changes might turn out to be the most satisfactory solution
of the problem. A final selection of changes (if any) to be made in the system
would, of course, depend on the results of the analysis.
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CHAPTER VII

AEROELASTIC EQUATIONS OF MOTION FOR A HELICOPTER

7.0 Introduction

This chapter outlines the procedure for including elastic blade mod.es
into the dynamical equations of the helicopter. The aeroelastic modes of
the rotor blades are of special interest from a stability viewpoint, since
the large distributive mass3 of the blade denotes an elastic system with a
low natural frequency. It is possible that a coupling between the rigid
body modes and the elastic blade modes could exist, but more important is
the possible coupling between the elastic blade mode and any automatic
control equipment. An introduction to the rigid body dynamics of the
helicopter is discussed briefly in order to provide a comparison between
the aeroelastic modes and the rigid body modes.

7.1 Method of Approach

The helicopter system is essentially a two-body problem; namely, the
rotor and fuselage. The degrees of freedom of such a system are many. For
instance. consider a single rotor helicopter to be made up of rigid members.
The body has six body motions, three translational and three rotational.
The rotor could have seven degrees of freedom whereby the blades are fully
articulated and the rotor speed is considered to vary. This does not account
for the possibilities of having more than the first harmonic present in the
blade flapping and lagging motions. Furthermore, it does not consider the
possible tail rotor degrees of freedom.

The technique for performing an aeroelastic study involves the super-
position of elastic degrees of freedom on the rigid body motions. The

helicopter equations of motion will include the first vertical bending
mode of the blade. This will serve to demonstrate how other elastic modes
can be included into the helicopter's dynamics. The derived mathematical
model will consider a single rotor helicopter in hovering and forward flight.

7.1.1 Axis System and Coordinate System. Almost every conceivable
type of axis system used in aircraft stability studies have been used in
helicopter stability studies. The most widely used has been the inertial
axis system; its popularity probably stems from the fact that the first
stability analyses of the helicopter were made for hovering flight. The
ground reference makes a very convenient setup in this particular instance.

However, in forward flight the description of the helicopter's motion in a
steady turn using the ground reference would be extremely difficult. The
inertial axis system will be used since it will illustrate this type of
axis system plus being consistent with the majority of previous work.
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All forces and displacements are referred to an orthogonal coordinate
system (x, y, z) which is non-rotating but translates with the undisturbed
steady flight velocity of the helicopter. The hub axis system with the
origin at the hub (xo, Yo' Zo) is coincident with the inertial axes (x, y, z)

when the helicbpter is in the undisturbed state. The origin and the fixed
coordinates are the rotor axes at time zero. The motions about the constant
velocity axis system are limited to small perturbations and are represented
in Figure 7-1.

7.1.2 Development of the Linear Equations for the Helicopter. Through-
out this analysis the study of the helicopter dynamics will be determined by
linear differential equations. The actual helicopter is a nonlinear system;
however a good approximation can be obtained by linearizing the equations
for small oscillations about an equilibrium position. The aerodynamic and
inertial expressions for the forces and moments can be reduced to a form
in which the equilibrium relationships are separated from the perturbation
parts. The dependent variable is separated into two parts, a steady state
component and a perturbation component. For example,

ux -AX+ Px
0

where Px is the dimensionless velocity component in the forward directionXo

('Ax  -- - Having made the above type of substitutions for all the

dependent variables, the "x" forces are written thusly:

X = X0 +A X

where X is the equilibrium part and A X is the perturbation quantity.

The perturbation part will contain only first order expressions and will
become the linear expression used in the stability analysis. The equilibrium
expression will contain only the steady state part of the variable and tha
terms therein will usually be non-linear in nature. The equilibrium
expression for X is a performance equation from which the steady state
part of the variable is specified or determined.

The rigid body motions include the degrees of freedom associated with
the pitch and roll control, the rigid body modes, and the blade motion. The

pitch and roll equations of the analysis are represented by eight perturbations
from the steady state. These equations include the advance ratios )Ax' Py' Yz

the pitch and roll angles a I and a 2 (the yaw motion a 3 is decoupled here); the

blade coning angle 1o; and the longitudinal and lateral inclination of the

tip path plane a1 and b

1i
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Note: Displacements, forces,
and-'moments are all shown in
positive direction.

Figure 7-1 Axis System Used for Helicopter
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Some important elastic degrees of freedoms will be considered which will
include the first mode of the blade vertical bending.

Eleven equations of motion are written by applying Newton's laws of
motion first to the helicopter body and then to the elastic rotor blades.

Three force and two moment equations are obtained for the body motion and
one force and one moment equation describe the elastic blade motions.
Since all moments and forces acting on the blade are considered as
harmonic functions of blade azimuth angle, every blade equation can be
separated into three moment or force equations by equating like terms in
the harmonic series. The basic equations of motion for a helicopter
using Newton's laws are:

Body Translation

Body Rotation

M (7-4)

Blade Flapping

~.(F~ rn Zo (7-6)

Blade Vertical Bending
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7.1.3 Modal Analysis. The inclusion of the elastic degrees of freedom
into the dynamical analysis of the helicopter can be made through the modal
approach. The modes are calculated by using the methods described in
Chapter IV. Each vibration mode* is treated as an individual degree of
freedom. A sufficient number of modes for approximating the motion are
included. The modes can represent any harmonic of a particular elastic
deformation. It must be noted that the inclusion of the elastic mode into
the dynamical equation cannot be treated in the same manner as the rigid
body degree of freedom without making special considerations. Associated
with the elastic modes are generalized displacements and forces developed
through the energy approach in accordance with Lagrange's equations. The
generalized force, corresponding to the generalized coordinate, h, multi-
plied by the increment 8h of the coordinate will give the work produced
by the acting forces during the displacement represented by 5h. The work
done by an elemental force P acting at a station i of a beam would be

9W= PL CLh (7-8)

where c.. is the deflection at the "i" station for a unit incremental
in

displacement in 5h. The total work produced by a unit displacement is

L=Pc (N)=P (7-9)

where P (by definition) is the generalized force. if P is an elemental

lift force then dF acting at station r along a helicopter blade is given
a

4 (7-10)
Fe-7

and c ih is given by the blade bending mode shape (r) for a unit

deflection at the tip [h(R)=l]. Then the generalized force F

corresponding to the unit tip deflection is

(Er)= (7-1-1)

0

The vibration mode refers to the elastic mode of oscillation. For a
hinged blade the non-cyclic, rigid body motion of the blade is referred
to as the steady flapping, io. The first mode for such a blade is then

that which corresponds to a vibration of one mode and so on.
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If the blade bending forces are defined as generalized forces and are
developed in the above manner, then the force expression of (7-7) can
be handled in a similar way to the rigid body force and moment equations
written from Newton's laws of Motion. The above approach is applied to
the helicopter blade dynamics in Reference 1 and is developed for the
aeroelast'.c airplane in Chapter VI.

7.1.3.1 Mode Shapes.

Bending

The development of the bending mode shape of a uniform beam is
given in Reference 2. The work of this reference is extended to include
a beam hinged at one end and free at the other such as an articulated
helicopter blade. The differential equation is given by equating the
elastic restoring forces of the beam and the inertia forces acting on
the beam. Thus, for a uniform beam with EI a constant

Eh (7-12)
ar4-Z7

where
E = modulus of elasticity - psi
I - structural moment of inertia "2 in 2
m a mass per unit length - lb sec /in
h = deflection at station r - in

If the frequency of vibration is w, then at any point along the
beam the deflection may be assumed to vary harmonically with time such that

hY))=hY)Sih W (7-13)

Substituting (7-13) in equation (7-12) the following expression is obtained.

(7-1.4)

where

2
S5EI/36
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The general solution of equation (7-14) can be written:

h A s5 n + 6 cosir -t C si1 *r + D cosh r('-r
in which A, B, C, and D are constants determined by the boundary conditions.

At r = 0 (hinged end; bending moment and displacement are zero)

do ; h o

At r = R (free end; bending moment and shear zero)
2 h h

applying the boundary conditions to equation (7-15), we obtain
from r = 0; B = D = 0
from r - R;

-A sim A R + C 51nh *R =o (7-16)
or

-A co sAR t C cosh -kk=o (7-17)

- 3, n & R cosh -PF? t Cos 4R sinh - R =o (7-17a)

The three smallest roots of this equation are given below:

), =3)24 FR)=706
If the natural elastic frequency (i of the blade in mode i (for a non-

rotating blade; i.e.,a= 0) is given by

WL E then 6ZL (7-18)

where
+1.00

0

+1-00

C r
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For the mode shape normalized at the blade tip h(R) = 1, the expression
for the mode shape h(r) = (r) becomes

Sim4 , Ss-l 5nv) -k Sr (7-19)

2 Sin 4R

Torsion. The differential equation for the torsional deflection of a
uniform beam can be written as

- (7-20)
C- J r 2t

For the blades, having a uniform cross section with fixed pitch at the
root, the following solution is obtained for the principle modes of
vibrat ion:

=sin~ n odd (7-21)

The undamped natural frequencies become

-r _ "(7-22)-R -Fi-l-/If7

where GJ = torsional rigidity

IP = mass polar moment of inertia per unit of blade length About

the elastic axis.
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Effect of Centrifugal Force and Damping on Mode Shapes and Natural Vibration
Frequencies.

Many studies have been performed on the influence of the centrifugal
force on the mode shapes and vibration frequencies of the rotating blade.
References 3 thiru 8 are all concerned with some aspect of this problem.
The derivation of the mode shapes of this section did not include the
effect of centrifugal forces, internal or aerodynamic damping, nor coupling
between the torsional and bending vibrations. In Reference 4, it is shown
by calculating the mode shapes, that the rotational frequency of the rotor
has little influence on the bending deflection curve. The error intro-
duced by using this simplification was found to be less than 3 percent for
the example cited (hinge at center of rotation) in this reference. It was
concluded by NACA (see Reference 6) that the general shape of the bending
deflection curve (rotating cantilever beam fixed at center of rotation)
in particular the location of node positions, is unaffected by r otation
although relative amplitudes vary. The amplitude of antinode loops rela-
tive to tip amplitude decreases with increasing rotational speed. They
further stated that the effect of rotational aerodynamic damping or the
physical constants have negligible effect upon the mode shape of the beam.

The bending frequency expression of equation (7-18) is for a non-
rotating beam; the natural frequency for a rotating beam is given by
the following expression

W + KU (7-23)

The constant K is approximately 6.2 for a uniform blade (fixed or hinged)
vibrating in the first mode. Reference 8 provides rapid estimation of
the constant value K for various types of beams (uniform and tapered) with
varying end fixities.

The natural frequencies and mode shapes of the rotating beam in
torsion vibration are little effected by the centrifugal forces. It is
concluded in Reference 5 that the effect of the free torsional vibrations
on the flapping of mass-balanced blades is in practice negligible because
of the relatively high natural frequencies in torsion. It was further
found that the aerodynamic damping in torsion would decrease with the
mode number while the internal damping remained the same for all modes.
In the fifth and higher modes, the intermal damping exceeds the aero-
dynamic damping.

7.2 Equations of Motion - (Rigid Plus Aeroelastic)

The linear equations of motion for a single rotor helicopter are
developed herein and include the first blade bending mode together with
the pitch and roll equations of the rigid body. The basic equations are
given by equations (7-1 to -7).
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7.2.1 Assumptions. The primary assumptions inherent in the
derivation of the total equations of motion are as follows:

1. The angular displacements about the body axis and rotor
hinge are considered small. (sin 9 = e, coo e = I).

2. The induced velocity can be derived from elementary
momentum theory.

3. The profile drag coefficient along the blade is constant
and the blade is without twist.

4. The rotor rpm is constant and the oscillation about the
drag hinge is highly damped.

5. The yaw motion can be decoupled from pitch and roll.

6. The body forces and moments derived from the rotor can
be averaged over a complete cycle of the aximuth.

7. The mode shape can be determined independently of rigid
body motions and aerodynamic loading. (uncoupled modes)

8. The inertial axes are assumed to be near the principle
body axes and the moments of inertia do not change
appreciably with time. Also the products or inertia
disappear from the perturbated equations since no steady
state angular rates exist.

9. The motions of the rotary wing in the rigid body analysis
are usually approximated by the first harmonics of a
Fourier Series.

) o =/3 Cos_ t , (7-24)

This approximation to the blade motion describes the path
of a blade particle by a sinusoidal flapping motion. Using
this assumption, the tip path of the rotor forms a plane and
its longitudinal and lateral inclinations are the coefficients
of the first harmonic cosine and sine terms respectively.
Addition of the higher order harmonics would superimpose
ripples on the plane produced by the larger first harmonic
terms. For the ordinary helicopter and for a travel speed
of 1/3 the tip speed, the amplitude of any harmonic is about
1/10 of the preceding harmonic. The relative amplitude be-
comes less at the lower speeds.

The path of the assumed rigid blade elements must be further
modified by the elastic deflection of the blade. The de-
flection of a blade element for a particular mode is repre-
sented by a function dependent on time and on the radial
position of the blade element. Thust
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where q(t) can be likened to p(t) in that it is a function of
time and is usually given by the first harmonics of the blade
azimuth position

r~c,+ COSftt1-32Sir .01 +(7-26)

and f(r) is the mode shape for the elastic mode of the beam
under consideration.

7.2.2 Coordinates. Rotor. If x , y , and zb are the instantaneous
coordinates of a blade element (Figure 7-h) in the inertial reference
frame,

IrI

Figure 7-2, Coordinates

the displacements of the blade element (neglecting the hinge offset) are:

+ Y'C OsC Os(7-27)

?b V+ n Yh 1 SA(7-28)

F AO + r/9 + h, (7-29)
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The blade velocities are:

Cos ,v (7-30)

Z-J fl r,8~h (7-32)

The blade accelerations are:

(7-33)

(7-34)

Zb Az LR + + h(7-35)
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The products of h8 and its derivatives can be neglected for all practical

purposes because of their relatively small contributions.

Helicopter Body - The instantaneous inertial coordinates of the helicopter
fuselage c.g. are Xcg., Yc.g.' and zcag.as shown in Figure 7-2. The

component displacements of the helicopter c.g. are

A. - o + hci.°41 (7-36)

= + - 2 (7-37)

The helicopter c.g. velocities are:

+ C . (7-39)

JI 
-

(7-40)

The helicopter c .g. 
accelerations are:

S-.(7-42)

"j, a + hca "x (7"-43)

(7-44)
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7.2.3 Body Forces and Moments. Forces (Rigid Body). The forces
considered as acting on the composite system in level flight are given
as:

(7 -45)

o (7-46)

+ D 7-4V7

In developing the forces derived from the rotor, simple aero-
dynamic relationships are used and are illustrated in Figure 7-3.

\0
L\ F-

'lip

Figure 7-3. Blade Section

Very little work to date has been done to include unsteady flow
into the aerodynamics of the rotor. The approach in the past has been to
calculate the aerodynamic forces using quasi-static theory (i.e., simple
2-dimensional strip theory). To illustrate, the reduced frequency,

w c/2V of a typical blade (11R = 550 ft./see., c = 1.3 ft.) at its centroid
of lift (3/4 radius) in the first bending mode, is about 0.08. According
to unsteady flow theory, if the reduced frequency is greater than .1 un-
steady flow effects should be included in the evaluation of the aerodynamic
loading. However, another point must be considered. At high advance
ratios (p> .1) the flow through the rotor appears very much like the flow
over a fixed wing. At speeds approaching hovering flight the downwash air
velocity through the rotor is of the same order of magnitude as the forward

flight velocity. The wake moves downward and backward away from the rotor
at velocities that are small compared to the blade velocity, so that the
geometrical configuration of the wake is radically different from that
considered in fixed wing theory.
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The airloads are resolved in the z and x directions by making the usual
small angle assumption

-:F _ dL (7-4s) J
C:1 - j r

JD ~JL (7-4)

From fundamental aerodynamic relationships we have:

JL- ,. v J,- = 1 J
2T (7-5o)

and o< :
(7-52)

P where t &A

r!

Using the above expression the following force equation results:

The blade velocities U and U may be expressed from the geometric
P T

relationship of Section 7.2.2.
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"U 6 "bOS4)+ bSin %P +(~-~ AX i..aR (7-55)

VT $Ab 4)+ b Cos 4 (7-56)

It is assumed that the induced velocity down through the rotor is
uniformly distributed over the rotor disc and expressed by the equations.

-. R T (7-57)
21r R2'Y7

where V' is the resultant air velocity at the rotor (Figure 7-1) and
is given by

I2I
- + -+ 2 '-v- Cos (o+o.,)k7-58)

The input blade pitch relative to the horizontal plane can be written as

L; -(91 COs p-e sp (7-9

where

z (3, +CX,

The A1 and B are components of blade pitch due to the cyclic pitch control

applied by the pilot and measured at the blade with respect to the rotor

shaft.

The resultant rotor blade forces transmitted to the hub can be broken
down into its three components, horizontal drag (H x ), side force (Yyo) and

0 
0

vertical thrust (Tz ). The expressions for these components may be written
0

by considering the forces of equations (7-53) and (7-54) derived for a

rotating blade which is free to flap.
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dHX1 dF6 co s q+ F,5n , (7-60)

JY~J(si~d ,~Cos ~y(-61)

JT -dF(7-62)

The average rotor forces will be obtained by integrating d Hx , d YYOand

d T along the blade from 4 = 0 to 4 = 2x. 0
z0

0 0

(7-63)

JO rzir

Ff0  -L C( j'--U r' (7-65)
o

Moments. The moments which act on the body and induced by the rotor, or

other aerodynamic influences, are defined as follows:

T 55-, H173 h37,. t T,1o ( 4. M M )7-66)

' M x : ' ' -Y p t,+ a .l T .. . k c ' o + IM i ,, , . ( 7 -6 7 )
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If the blade hinges are offset from the hub, a moment will be
transmitted through the offset to the body. The moment about the hub,
Mh, due to the offset of the flapping hinge can be expressed as

F1 (7-68)

where FI is the total blade force acting normal to the hub at the blade

flapping hinge and "e" is the offset of the flapping hinge from the hub
center. The blade loading can be represented by its components:

F t- F o (7-69)

The expression for the normal hub force due to aerodynamic loading is
given by equation (7-65) before integration with respect to *. The load-
ing due to the inertia force can be expressed as follows:

rR

(7-70)
The moment introduced by the offset blade hinges can be resolved into its
pitch and roll components.

Mh Vo: " h Cos 4) (7-71)

Mk ! M1 "h Sin Y (7-72)

.Nr (A+ F COS Y (7-73)
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These moments have been expanded for the rigid body case in
references 11 and 13. In the work of reference 11 the above moments
include the elastic blade torsion degree of freedom. The effect of
vertical blade bending has been assumed neglible on these moments,
Equations (7-73 and 7-74).

The aerodynamic drag forces and body moments acting directly on
the fuselage are best obtained from wind tunnel data and corrected for
rotor do,-nwash. These forces and moments acting on the body are usually
given in coefficient form such as CDf C M and expressed as a function

of the fuselage angle of attack and dynamic pressure. If it is assumed
that the airstream velocity at the fuselage acts along the resultant
velocity vector at the rotor, the fuselage angle of attack a f for small
angles becomes

and the dynamic pressure q is equal to

(a ) A [0.2] (7-76)

Rotor Moments - The rotor equations of motion are obtained by equating
the aerodynamic moment about the flapping hinge to the inertia moment
about the same hinge.

MO (7-77)

Since ( y)a and (R )m are harmonic functions of azimuth angle, they can

be written:
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where the coefficients involve the different degrees of freedom. In this
analysis, only first harmonic terms are considered. If these expressions are
substituted into equation (7-77) and the coefficients of like trigonometric
termts are equated, then the following three eq~uations are obtained:

(M~ (MI )rM+ (7-81)

(rvi.) 0  +(7-82)

The aerodynamic moment about the flapping hinge for an elastic blade in
bending is

BR
~ I- (7-8 3)

where the value of U, U and e are given by equations (7-55, -56, and -59).
p t

The inertia moment about the flapping hinge for an elastic blade in bending is

(~~) ~ ji f ~ (r,64 k)co s ri±O1~ rnrd
(7-84)

where the blade accelerat-.ns are given by equations(7-33, -34, and -35).
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Blade Bending Equations - The blade bending equation is developed in a
manner similnr to that of the flapping equation. The bending motion of
the blade in the flapping plane may be developed by suiming up the general-
ized aerodynamic, inertia, and elastic forces.

( ~ V' +(4 0i(~7 = (7-85)
Since T a + ( h and ( z) are harmonic functions of aximuth angle,

they can be written:

~~~~ ~(~).s, in (786P_

h "(7-87)

SI(7-88)

If these expressions are substituted into equation (7-85) and the co-
efficients of like trigonometric terms are equated, the resulting blade
bending equations are obtained:

(FZ). + (F)h+ (F ),=o (7-89)

+ t(F =o (-0

(F(F1 (F (7-91)

The expressions for the normal blade loading are derived from the
following considerations:

The generalized force of the elastic blade element due to the aero-
dynamic loading is

0(7-92)
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where (r) is the normalized mode shape of the first bending mode.

The elastic restraining force acting on the blade is as follows:

where the blade stiffness constant KB is obtained by determining a

generalized deflection at the tip due to a generalized bending force.
The development of this costant will be illustrated in Section 7.3.

The normal loading of the undeflected blade element due to the
generalized inertia force can be expressed as follows:

(7-94~)

7.2.4 Total Aeroelastic Equations of Motion. The inclusion of
the three bending equations (7-89, -90 -and -91) with the rigid body
equations demonstrates the inclusion of elastic modes into the dynamics
of the helicopter for level flight.
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XY - IR -PKd~ (7-96)

7z =Tj, =-FjLA& R (7-97)

Z M ~ T~h~ + ± 1 (7-98)

yva I-.O +-ioVC?: + M T .(7-99)

m ( 0 (7-100)

~m ( m (-102)

~ (F ) h (F ' :(-103)
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7.2.5 The Stability Equations. To illustrate the derivation of
the stability equation from the total equations of the system, the follow-
ing example is given. Consider the differential equation descrioing the x
degree of freedom of the helicopter as given by the total equation, (7-95)

R QI((7-!06)

where X is the summation of external x-forces acting on the system. Then
for small deviations from the steady state flight, the equation can be
linearized by writing 4U o

I I

I 2

where the variables in the eleven equations of motion can be considered
as the sum of a steady state component plus a perturbed value from the
initial condition.

The aerodynamic force X can be expressed as a function of the
dependent variables by expanding the force in a Taylor series about the
steady-state equilibrium condition, Xo,

-=2(o tA (7-I07;

Since only small perturbations about a steady state flight condition are
considered, the summation of all external force at the steady-state flight
conditions is zero (X° = 0). The total change in the force in the above

equation is made up from the partial derivatives of these forces taken
with respect to each of the dependent variables. These terms are known
as the stability derivatives and are written as follows:

L"'=A' L2 X + (7-108)

where
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Because Xis a function of ix' y, a,, etc. (See equation (7-57) and

(7-58)), the effect of a variable %,,may be included in the stability

derivative by the following expression:

+

where ( ) represents the dependent variables x' )y, etc. Similar

expressions apply to the y and Z forces. (See Reference 9).

The differential equation describing the dynamic motion of the heli-
copter from an equilibrium condition can be written as follows:

(7-109)

By using operational calculus, the differential equations reduce
to a set of algebraic equations with complex coefficients where the
complex variable "s" of the form (cr- iw) replaces the differential
operator, D.

F I +F-zl + - -- 12., F112.~ - a(7-11-0)

where F. SI R

F,,,< PV X./,x-t

Il

F, 18 A.=
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If the process is applied to the remaining equations of the complete
set (Equations (7-96) thru (7-105)), the perturbation equations are obtained.
These equations are presented in Figure (7-4).

If a stability analysis is performed on a typical single rotor
helicopter with fully articulated blades, the characteristic equation will
yield the following rigid-body modes for hovering flight:

Two Unstable Modes with low dampings and long period.

Time to Double Frequency of Mode

Longitudinal - 5 sec. 1/50 fl

Lateral 5 90 see. 1vi/50 _-

Three Rotor Flapping Modes with high damping and short periods.

Time to Half Frequency of Mode

.05 sec. "/ 5 i/ L

.05 sec. -- 2 -S-..

. 05 sec. ,. 1

The aeroelastic modes will of course have higher frequencies and lower
damping. The frequency of the vertical blade bending mode for a uniiform
blade is about two and a half times the rotor frequency and the first blade
torsion will be greater than three times the rotor frequency.

F l i 4I , I I

OlIt
r+, \i I< I.

I loA

p,., 1 4Lro J L, J L J L J @ L

I I

Input Colum- "

Figure 7-4. Matrix Form of Equations of Motion
Note: (Sixth row and column have

been omitted which would
WADC TR 55-173 have represented yaw)
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7.3 Illustrative Example

An illustrative example is given here to demonstrate some of the
processes and methods presented in this handbook as applied to the
dynamics of an aeroelastic helicopter.

7.3.1 Statement of Problem. In hovering flight the vertical degrees
of freedom ( )z, Po' qoT in the stability equations of Figure (7-4)

can be decoupled from the remaining equations of the set because the cross
coupling terms are zero. Siice the system can be decoupled into the
vertical three equations and the pitch and roll consisting of 8 equations,
the vertical stability of the system will be investigated. The three
equations in vertical body motion ( p ), steady flapping motion (p ), and
the steady blade bending motion (qo) Ere given by equations (7-97), (7-100)
and (7-103).

2 l (7-111)

+ (7-112)

(F + (F + #(F)= (7-113)

A typical helicopter shall be assumed having the following numerical
parameters.

1. Weight W - 7000 L6S. Fn 'z6

2. Tip Radius R 26.sft, 5 I

3. Air Density /0 ,0023'8 5Li.$/ft'

4. Number of blades

5. Rotor speed - = 20,8 rac/sec.

6. Lift curve slope a = 5.'i5

7. Steady flight velocities h 0 0 0

8. Induced flow I W - 4-
WADC TR 55-173
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Bending Mode Shape and Stiffness Factor - An assumed mode shape is used
which approximates the exact mode as calculated in section 7.1.3. The
assumed first bending mode (see Referece 3) is given by the normalized
function (see Figure 7-5).

Fige 
(7-114)

-10

Figure 7-5 Mode Shape

This simplified expression approximates the latter portion of the true
curve (Equation (7-19) for n=l) to a very high degree; however the antinode
loop is decreased in amplitude giving a more realistic mode shape. The
reduction in amplitude is in the right direction for the influence of the
centrifugal force on the non-rotating mode shape.

The elastic blade deformation for first bending, h1 (r,t) is represented
by the expression

t 0-)) (7-115)

where is the generalized deflection of the blade tip and is the steady

part of the infinite Fourier series for q(t), that is q is independent

of the blade azimuth position since the cyclic effect is decoupled in

this case.

The symbol qo will replace qo(t)

from here on.
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Stiffness Factor - KB of the blade (see equation (7-93) ) is determined
from strain energy considerations. The potential energy, UBR for uniform
rotating blade in bending is given by the equation,

2

where El is the bending rigidity of the blade, and 1'(tf)is slope of the blade
at any radial station

T( - , L cos nn
R 3 R R (7-117)

The first term of the potential energy equation expresses the energy
absorbed by the internal restraint of a non-rotating blade and the
second term expresses the additional potential energy absorbed by the
rotating blade when the elastic blade particles move against the
centrifugal force. The generalized spring force is obtained by differ-
entiating the potential energy expression with respect to the generalized
blade tip deflection,

-r 8 3 - '72 3 (7-118)

The stiffness constant for the first bending is then

182 R3 (7-119)

The numerical value for this example becomes

KB = 279 + 2380 = 2659
and it is noted that the stiffness attributed by the centrifugal force
is almost ten times that due to the internal restraint of the blade.
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7.3.2 Equations of Motion. The summation of the force equations £

(7-111) in the vertical direction becomes

The blade velocities and pitch are:

P r 0 -o'(Y-) t Ao Iq R (7-122)

0 0, (7-123)

The collective pitch input 0°0 is the only input considered.

Expanding the force equation (7-120) we obtain

The steady flapping equation (7-112) becomes

"(in) ] 0 (7-125)

WADC TR 55-173 387 387l



The blade accelerations are given as (see equations (7-33) to (7-35))

b p L tr 1  t- (r) (7-126)

-a cos( 5 (7-127)

2.
~rn~n ±t 0 1 ( (r% 2. Sin y (7-128)

Upon making the substitutions for the blade velocities and accelerations
we obtain

24 L "--

2,116 /I T& g o 4 _

+ R3 -W~A 21R 151)f1-94R -I - (-Ir _  o)<,)G.
rn R O +MaR/7 MCRlo+-11 I

(7-129)

The blade bending equation (7-113) becomes

.1f a,-, ,- , + (} ' (AbCos(qlb 'nk4)f

(7-130)
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Expanding the above equation we obtain

S24t ( L .

(7-131)

Linear Equations. The linear equations of motion are those given by
rows three, seven and ten of Figure 7-4. Linearization of equations
(7-124) and (7-131) is accomplished by making the substitution for
the dependent variables,

AZ. + Lz(7-132)

I A."o 0/ (7-133)

6O 0 +(07-14)

and then taking the partial derivatives (stability derivatives) with
respect to the bar or perturbated quantities. In writing the linear
expressions the following boundary conditions are made:

A a ZO =  M/i--" 0 = 00 = 0

The linear equations are:

3, 14e (7-136)

7, ,- ,,9 F,- (7-137)
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The bar over the variable 
has been dropped for convenience. 

The above

equation can be decoupled 
from the larger set in 

hovering flight, and

the helicopter is considered 
to be stabilized in its 

pitch and roll

motions. The contribution of the 
blade bending to the stability 

equations

can be had 'by eliminating 
the third row and column 

of the above equation,

leaving only the rigid 
body equations.

Stability Derivatives-

~JL~ 36

-+ .a

- .m a , -&

- 56

3
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Determining the Boundary Conditions. The flight trim conditions are 4

obtained by cons.iering only the steady state terms of the total equations
(all derivatives terms made zero). The following relationships are used
for calculating the equilibrium conditions in hovering flight ( uxo = 0).

_2-- (7-139)

rn R 00 (7-Plo)

L2= POO g o fo 'rr > 00

7g t 'R d e

The copoen transf r fucto (F. 2- ) ar 3ad p o mteidiua
ii =

23R

Solving for the above conditions for Po00 qoo' and 000 we obtain

00o = .1274 radians

qoo = .2358 feet

9 0 = .1660 radians

7.3.3 Obtaining the Result. The linear differential equations have
been obtained from the total equations of motion for stability studies.
The component transfer function (Fij s) are made up from the individual

helicopter stability derivatives. The performance study has been made to
provide the boundary or initial conditions for the numerical computation of
the F 'j SO
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Stability characteristics are determined from both the qualitative
and quantitative information derived from the over-all transfer functions,
the characteristic equations, and the transient behavior of the system.

Transfer functions will be obtained by using the Laplace transform of
the differential equation. The frequency response of the system is given
for both the rigid body and the aeroelastic cases.

The characteristic equation gives the characteristic modes of the
dynamic system whereby the roots of this equation yield both the damping
and frequency associated with each mode.

The stability equation becomes:

r,09690 + 122207s -15. 5 - 3514.4~s + 57.4os 2 -82.4 -.0970s -7s 1

645708 + 31558.9s -437723-23260s - 1011.2s2  -135.5 -181s 2 °

5.866 - 396.82s .3.123 - 181.401s -2641-16.9S -.928s j [qo]

099 14845o1
3783 o

7-142)

The transfer functions are easily obtained by applying Kramer's rule to the
stability equation.

Aeroelastic (p ,p q ) i

Oz ( s4+42.0583+7582s2+1361is+214ooo)
-~ '~-3362 54
9o (s 541.22s +3648S3 +73307S +122400s+108 6500)

.454.9 (s+16.15s+283!s+296.1)
o (+41.224 +3648s 3+73307s2+1224000s+1086500)

qo - 5615 (B3+5.802s2 +414.59s+359)
U_5 4 3 2

o (s +41 .22s +36485 +73307s +1224ooos*1086500)

The frequency responses are given by the phase and amplitude plots of

WADC TR 55-173
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Figures 7-6, -7, and -8. The plots show the separate regions of response
and also give the comparison between rigid body and aeroelastic analysis.

The characteristic equations are given for the two cases and the
roots are presented where the real part of the root is the damping factor
(not to be confused with damping ratio) and the imaginary part is the
angular frequency of oscillation (rad./sec.).

Aeroelastic Case

A= s5+41.22s4 +3648s +73307s 2+224OOs+1O865o0 - 0

I = -.9381

s2,3 = -11.18 + 17.01i

s4,5 = -8.966 + 52.l0i

Rigid Body Case

A = s3+22.97s2+428.7s+382.6 0

s = -.9377

s 23 -11.02 + 16.93is2,3-

The transient responses for the aeroelastic case (Equation 7-142)
are given in Figure 7-9. In this figure transients in pz) Pe, and qo

are obtained from electronic analog computer for a one degree step
input in 90.
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Collective _

Pitch + O
Angle

Vertical
Advance .01 I p
Ratio

Coning 0-
Angle +o

Blade
Bending .07 ft. q i_
Deflection j _j

h1 Sec.-u

Weight = 7,000 lbs.

Altitude = Sea Level
lx o = Iy= jZo = 0

0 0 0

Figure 7-9. Vertical Transients of a Helicopter in Hovering Flight ('x 0)
Determined By An Aeroelastic Analysis Which Included o
The First Blade Bending Mode.
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77.4 Illustration of the Use of a Root Locus Plot to Demonstrate the Effect of
Torsion and Flexibility of the Blade on Helicopter Stability.

The root locus method has gained much popularity as a tool for synthesizing
automatic controls and for describing the stability of systems with feedback
networks. The method has further merit in its ease of yielding the stability
characteristics of a system as a function of a change in parameters or the
introduction of new degrees of freedom into the characteristic equation of the
system. The latter use which is of interest here, is also described in
Reference 10.

7.4.1 inclusion of Torsional Effects

The particular application to be illustrated here is the resulting
change in the rigid-body stability analysis of the helicopter by including
blade torsion into the longitudinal characteristic equation for hovering flight.
The basic data of the helicopter in Section 7.3 will be used and supplemented by
the required additions for the insertion of the torsion mode.

In the case of torsion flexibility, it is assumed the blade incidence
about the featherIng axis is completely restrained by the pilots control
(irreversible servo). However, the blades are permitted to twist about the
elastic axis in the first torsion mode of the blade. The geometry of the blade
is as shown in Figure 7-10.

EL*STIC 4XIs

&vc.Al FSAitGIa A915S

b PbMa~lzOtJTA L

Figure 7-10. Blade Balance
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The location of the aerodynamic center and the centers of mass with
respect to the blade feathering axis is referred to as the aerodynamic
and, mass balance respectively. In this example, the blade has a
symetrical airfoil with aerodynamic center and feathering axis coincident.
The general case will have the elastic and c.g. axes displaced a distance
le and Im  from the feathering axis. In adding the elastic degree of

freedom to the system, the equation of motion express4ing the blade torsion
moments about the elastic axis must be considered.

where

(~)U -~ UR[.+~v T+V.v1Ir '?r

Z+ 6 ((3 +T Co , (e -4Y' q~ 61 ~I,, + )"

% T" (T = generalized torsionalstiffness)

This moment expression has been expanded and resolved into its

Fourier components as shown in Reference 11. In this example, the high

frequency effects associated with and '" have been neglected. The
purpose is to show the effect of torsion on the low frequency modes of
the helicopter.

7.4.1.1 Torsional Mode and Stiffness Factor+

The first torsional mode of the blade is represented by the
expression 7 ()

where the function o-(t) is the generalize. torsional deflection of the
blade tip. Here again, the function o-(t) will be xepresented as a
harmonic function, i.e., T 1_ COS p I_, -

The first torsional mode shape j 1 (r) is represented by the following
function, normalized at the blade tip (see Equation 7-21).

WADC TR 55-173 2 R

40o



The generalized restoring force is obtained by differentiating
the potential energy with respect to the generalized deflection. The
potential energy for a blade in torsion is expressed as

" I_ rr (7-145)

where GJ is the torsional rigidity of the bladie. Solving for the stiff-
ness factor, Ty of the first mode

T SR

and

The design value of the blade stiffness for the typical
helicopter is

KT= 4914 ft -lbs
rad.

7.4.2 Rigid Body

To illustrate the procedure, the logitudinal rigid body equations
of motion in hovering flight are used for describing the helicopters motion
in forward translation, fuselage pitch, and rotor tip path plane pitch.
The characteristic equation for our typical helicopter becomes (see
Reference 11 for evaluation of stability derivatives):

IX (1750 + 122200s) px + (-2570-1359s2 ) a + (4285"203s),l a 0

My 15690 jx + (54,640 + 9640s) + (54 6 4 0-2590s)a 1 = 0

M " 167 px + -481 a1 + (-479-41.6s)a - 0y x

(7-146)

Some of the high frequency effects have been suppressed such as the neg-
2

lect of the s ab ter: in order to simplify the example.
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The factored form of the characteristic equation is

- -. 048l(s + l.1l7)(s - .1071 * .4333i)(s + 10.63) - 0 (7-147)

The roots of the above equation are plotted in root locus form in Figure

7-11a. The rigid-body roots are labeled plR, pal p3R' and P4R where the

unstable long period mode is represented by the two roots in the right hand

plane.

7.4.3 Aeroelastic Case

If an elastic degree of freedom is introduced to the rigid body case,

the effect is to give a displacement to all the existing rigid-body roots the

magnitude of the displacement will depend upon the stiffness of the blade.

Permitting the blade to twist in torsion, an additional degree of freedom is

given to the helicopter and the characteristic equation becomes:

x (1750 + 109555s)Ax + (-2570 - 1359s2))aI + (4285 - 203s)aI + 0 - 0

M yg 1569o)x + (54o64 + 964os2 )a + (5464o - 2590s)a1 + 0 - 0

M11 167p + -481a1 + (-479 - 41.6s)a + 44 .3a2 - 0
y x 1-Q9970 e+75 9970 e 94(je+ m)s

-f e (3545)x + A +.1368 a1 + (e+) 2 +3 al
22

(2e~fm) +.1368 2eym +..6 Ue+'-16

+ 432 90701e+'46414U
( e+3a2 a2 -0 (7-148)

fem +.136a

The characteristic determinant should be expanded about the fourth
coluin so that the rigid body determinant appears as one of the minors.
The first locus is to illustrate the effect of the variations in torsional
stiffness with fe and Im set at their design values.

I . ft.

The new characteristic equation in factor form becomes:

AA - (-5545 - 3.17 KT)

-443(.678)(s + .661)(s + .0921 t .578i)(s + 10.33) - 0 (7-149)

The factors of the second minor become the zeros (zlA, z2A, etc.) of the
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root locus plot and the factors of the rigid body determinant become the

poles, (plA, pA- etc.). In root locus fashion, the above equation

(7-149) is expressed as follows:

6240 (s + .661)(s + .0921 ± 5791) (s + 10.33) Ill L (7-150)
(5545 + 3.17 KI(S + l.117)(s - .1071 1 .433i)(s + 10.63)

The locus of roots for the characteristic equation of (7-149) are displayed

in Figure 7-11b where the value of KT  is permitted to vary over a wide

range. As KT  becomes infinitely large, the rigid body case is approached.

The variation of blade c.g. position is another important parameter

which can be studied to advantage by showing the root locus with change in

blade c.g. position, jm . The characteristic determinant, Eq. (7-148), is

again expanded about the fourth column, only this time the term 
4 e + /m is

left indeterminate with KT  fixed at its design value. If je is held at

the design value of .1 ft, and m is permitted to take on the following values:

im = 0, " m = Pe) _m = -ie and J. = -2

then the locus of roots for this variation is as described in Figure 7-l1c.

In all of the above cases, the different boundary conditions result-

ing from changes in blade balance and blade stiffness did not significantly

change the stability derivatives of equation (7-148) except the last two

elements in the last row as noted.

In Figure 7-12 transients are shown for the above case (where Y% and

(Xe +fm) are set at the design values) and are compared with the transients

for a rigid body case.

7.5 Summary

The primary purpose of the manual, of course, is the presentation of

methods of analysis and in particular the material of Chapter VII has applied

these methods to the helicopter. Where possible, numerical examples have been

employed to illustrate the procedures. Although some results have been pre-

sented, any discussion concerning them has not been made since the method

and application were of primary concern. At this point, it might be well to

discuss the present stace of the art and give a few concluding remarks on some

of the results attained thus far.

Comparatively little work has been done concerning the effect of aero-

elasticity on the stability and control of the helicopter. However, a large

amount of effort has been spent and is being spent on problems dealing with

helicopter vibrations,flutter and blade stresses. These analyses are close-

ly akin to the analyses of the manual and overlap in many areas, but actually

lie outside of the scope presented here. Many studies deal with isolated

cases such as blade or rotor stability, but few are concerned with the aero-
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elastic effect on the overall stability and control of the helicopter plus
any feedback control equipment.

An early attempt to show the effects of blade restraint about the
feathering axis on the long period modes of the helicopter is given in Re-
ference 12. In this work the author, without permitting the blade to twist
elastically, shows that the possibility does exist of improving the inherent
stability of the helicopter by restraining the blades about the feathering
axis, together with proper blade mass and or aerodynamic balance. The per-
formance and results are indicated by transient analysis. In Reference 13,
the same problem is pursued further by using elastic and viscous restraints
between the non-rotating part of the swash plate and the frame of the air-
craft. As in the first article, the analysis permits variations in the
blade c.g. and a.c. positions. The equations of motion are developed and
applied to an example case for hovering flight. The improvement in helicopter
stability achieved by this means is demonstrated by determining the roots of
the characteristic equation and transient responses. Reference 14 actually
includes rotor blade flexibility into the analyses by the method presented
herein. In this work, the first torsion mode of the blade is incorporated
into a helicopter stability analysis which permits a variation in the mass
and aerodynamic center with respect to the elastic axis of the blade. It
is shown by this work that blade flexibility and unbalance can have a notice-
able influence on the damping in pitch of the helicopter. The work of Re-
ference 14 further demonstrates that blade twist flexibility and unbalance
can materially reduce the effectiveness of an automatic control system de-
sign if these items are neglected in the control synthesis.

The examples used in this chapter are primarily to show application
but they do contain some significant results. The example of Section 7.3
shows very little effect of blade bending on the vertical response of the
helicopter body and rotor near hovering flight. The frequency responses
and characteristic roots show little change in the rigid body modes (fre-
quencies below rotor RPM) for having included the bending degree of freedom.
The same results have been obtained for the cyclic or pitch and roll cases
at low advance ratios (p < .5).* However, the analysis of Reference 15
demonstrates that the inclusion of blade bending is important at advance
ratios near 1.0 and above. This is an important consideration for the case
of an unloaded rotor traveling in the airplane speed regime.

The results of Section 7.4 shovs a significant change in the low
frequency modes of the helicopter due to the inclusion of the blade elastic
twist and mass unbalance. In this example, the elastic axis is not coin-
cident with the feathering axis as is the case with most other simplified
analyses. For the blade configuration of this example, it shows that the
inclusion of blade twist increases the period and divergent rate for de-
creasing blade stiffness. As in all previous studies moving the c.g. in
the aft direction causes a destabilizing influence. As can be seen from
the blade geometry, there are many configurations to be investigated where

* These results have been obtained by the J. B. Rea Ccmpany and are to

be published in WADC TR 55-407.
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the analysis permits variation of parameters such as blade mass and aero-
dynamic unbalance, elastic-axis location and feathering axis l.ocation. O
course, many of these variations would be limited by practical blade design
and unwanted vibrations.

In conclusi:i, the following general remarks can be made.

1. The methods presented herein are extremely useful for including
structural elasticity into the stability and control analysis of the heli-
copter,

2. Blade bending can be neglected in most stability analyses except
for the high advance ratios p z 1.

3. It is important to include blade twist into analyses for auto-
pilot design equipment, especially when the blades have low stiffness
and/or have mass or aerodynamic unbalance.
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NOMENCLATURE

A1  Lateral cyclic control input. Tilt angle measured
at the blade with respect to shaft line. Right
tilt positive.

a Lift curve slope of main rotor blade, per radian.

a = Longitudinal tilt of tip.-path plane (or vertical
axis) with respect to horizontal (to vertical)
backward tilt positive.

B = Blade tip loss

B = Longitudinal cyclic control input. Tilt angle
measured at blade with respect to the shaft line.
Forward tilt positive.

b Number of main rotor blades.

b u Lateral tilt of tip path plane (or vertical axis)
with respect to horizontal (to vertical) - right

tilt positive.

c = Chord of main motor blade.

D = Horizontal component of helicopter drag acting
X at c.g. of helicopter.

e = Flapping hinge offset.

Fi, = Component transfer functions = 2 + Bs + C
where A, B, and C are the stability derivatives.

F = Normal blade force _I to hub.

F = Aerodynamic contribution to F1

z
F = Inertial contribution to F

m

(Fz),(Fz),.(Fz )= The components of the vertical blade generalized
force when described by the first harmonics of a

Fourier Series.

FZ (F,) + (F)cos +
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(F)a = Generalized aerodynamic force acting on blade and
. to undeflected elastic axis.

Fir) +i ( Fe') -os Y?' + (F;'s je
(z)h = Generalized elastic restraining force of blade in

bending.
(PS).= (rg)f (F )OS Y+1 NY

(Fz)M 6 Generalized inertia force normal to undeflected
blade in vertical bending.

(Fj)= F +(rCOS if + (F;') 5I it

9 a Acceleration of gravity.

H x = Horizontal hub force of helicopter rotor positive to
o the rear.

h = Rotor blade elastic deflection.

h = Rotor blade generalized deflection in first bending
mode. he- '() (r)

h = Vertical displacement of helicopter e.g. from hub
center positive c.g. below hub.

Fore and aft displacement of helicopter c.g. from
cg shaft line.

= Moment of inertia of helicopter about longitudinal
IX axis ( in horizontal plane) and passing through c.g.

(without blades), slug-ft

I Moment of inertia of helicopter about lateral axis
Y (in horizontal plane)2 and passing through c.g. (with-

out blades), slug-ft .

= Moment of inertia of helicopter about vertical aiis
Iz passing through e.g. (without blades), slug-ft2 .

KB = Blade bending stiffness, lb per ft.
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Mh ,Mh = Components of the hub moments due to the offset of
x0  YO the flapping hinge.

M = Total blade moments about flapping hinge.
y

M Mp M" The Fourier components of the blade momenta about
y ~y the flapping hinge.

M Co kp+M 5in 14V

(y ) - Total aerodynamic moment of blade about flapping
y a hinge. _

(T) = Total inertia moments of blade about flapping hinge.Ym

M = Rolling moment about longitudinal axis which passes
Xc.g through e.g. and parallel to the "X" inertial axis.

Positive left roll.

M = Pitching moment about lateral axis which passes through
c.g. c.g. and parallel to the "Y" inertial axis. 'Positive

nose down.

M = Yawing moment about vertical axis which passes through
c.g. e.g. and parallel to the "Z" inertial axis. Positive

nose left.

m = Mass per unit length of blade, slugs per ft.

= Total mass of helicopter, slugs.

q(t) = Generalized, blade bending deflection, positive tip up.

qo' q, q2 
= Fourier coefficients of generalized blade bending

deflection.

R = Blade radius of main rotor.

r = Elemental blade radius of main rotor.
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s = Laplace operator (= . )

T = Helicopter thrust

T z  = Vertical helicopter thrust component
0

t = Time, sec.

V = Velocity along flight path

V = Resultant velocity at rotor, vector sum of V + v.

v = Induced velocity of main rotor.

W = Weight of helicopter.

x = Horizontal "X" force acting on helicopter.
Positive to the rear.

x , :k 0 Horizontal displacement, velocity and acceleration

of helicopter hub in direction of "x" axis.

y - Horizontal "Y" force acting on helicopter. Positive
to the right.

y = Y component of horizontal rotor force. Positive
Yo to the right.

y, Y, -Y = Horizontal displacement, velocity, and acceleration
0 Y of helicopter hub in direction of the "y" axis.

Z = Vertical force acting on helicopter (not including
weight). Positive upwards.

Vertical displacement, velocity, and acceleration
of helicopter hub.

a = Blade angle of attack.

a f = Fuselage angle of attack.

al, , U = Angular pitch displacement, rate and acceleration
of helicopter shaft line with respect to the vertical
and positive nose downward.

a2 ' 62' "72 = Angular roll displacement, rate and acceleration

of helicopter body. Positive left roll.
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a ' "Angular yaw displacement, rate and acceleration

3P 3Y a3 of helicopter body. Positive nose left.

(t) Blade flapping angle measured between blade
feathering axis and horizontal. Positive blade
up.

p(t). p0 - a, cos* - b, sin

o - Conirg angle of helicopter blade.
0

5 = Mean drag coefficient of blades.

e = Total pitch angle of helicopter blade measured

betveen chord line and horizontal.

e = 90 - 01 cos * -6 2 sin *

60 = Collective pitch of helicopter blade.

e1 M Swashplate tilt with respect to horizontal for
lateral control.

1 =A 1 -a 2

S 2 Swashplate tilt with respect to horizontal for
longitudinal control.

v 82 = B1 + 1

7% ="i -
"a ffER

= V forward advance ratio
WR

Fx~ ~ ~ ox4o n respectively (positive for forward

RW flight).

Izy- Ay m YO and -'o respectively (positive for right translation
R of hub).

PZ' Az W o and -o respectively (positive for dowaward, trans-

CXR lation of hub).
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(r) = First bending mode shape of blade.

= Standard air density.

0- = Real part of operator "s".

= Slope of bending mode shape

= Blade azimuth angle, positive in direction of
rotation, zero aft.

. = Angular frequency of main rotor.

= Angular frequency (imaginary part of operator "s").

I
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CHAPTER VIII

METHODS FOR SOLVING AEROELASTIC EQUATIONS

8.0 Introduction

This chapter presents a few of the more widely used methods for
solving aeroelastic equations of motion and discusses the uses of both
digital and analog computing equipment in such computations. For the
purpose of demonstrating the methods the following set of typical, yet
simplified aeroelastic equations of motion for an elastic airframe is
chosen:

Summation of Vertical Forces*

Summation of Pitching Moments

am ~ am__a &--m ht m t!M

TU aI hl 36 (8-2)

Summation of Generalized Forces for Elastic Degree of Freedom

I $
(8-3)

The above equations are usually written in 
what is known as the I

"stability derivative" -orm.

If the frequency range of the motion is high (above 1 cps) it is well

to add the term Z CL.
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The stability derivative form i3 obtained by dividing equations (8-1),
(8-2), and (8-3) by m, Iy, and ml, respectively, which gives:

(8-4)

D e M ( M D +)(M.Dt(8-3)

(PD Dt 4

(8-6)

d
where D = ~t operator. Regrouping terms:

hg~~ (8-7)

)1+ (8-8)

or (dividing through by operator expressions on left) we obtain:

[(I- zO E)DM ,D z, + ,6e (8-10)

D#-M D M, D, M ()r n (i)

[2+ ( W.'- P)D(,P + D± ~'e

(8-12)
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8.1 Development of Solution Forms of Equations of Motion

The equations of section 8.0 are not in a form that is readily
suitable for solution by computing procedures. Hence, it is desirable
to further manipulate the equations to obtain the several forms that
can be solved by either digital or analog equipment. The following
algebraic manipulations result in several useful forms.

First, stability derivatives in equations 8-7. 8-8, and 8-9 can be
replaced by Fij expressions.

hn example of this is as followst

12 (8-13)

An alternate correspond2 ng to equations (8-10), (8-11) and (8-12) is:

(F + - F k J 6 ),-- (8-7)

where F1 M-F 2.F. D' F -/FFl
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Secondly, the transfer functions relating total aircraft responses
to inputs can then be found by algebraic means from equations (8-16) to
(8-18) (Cramer's determinate rule); e. g.,

Pitching Motione (8-19)z

Elevator Motion - E =

where the determinants: !IZa - -A j- ' -F,, I t

A *F / (8-20)

-F -F
31 .3-4

and

F - F I-

"24.

-FF

Another and perhaps a more familiar approach to obtaining the
transfer functions involves either the Laplace or Fourier transformations.
The results obtained are equivalent, for if we consider the Laplace transforms
of equations (8.0), (8-1) to (8-3), we have:

*JT5JV~~-~VI -~/(8-22)

( S+ CS + (4~s) Z (S,(8-23)

s+ #1)k,& =  ,(a), (8-24)
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where the initial condition data is omitted since it is assumed to have
no effect on steady-state oscillatory motions.

The expressions on the right of Equations (8-22) through (8-24) are
found by transforming the terms on the right side of Equation (8-7) through
(8-9). After rearranging all the terms of (8-22) through (8-24) and
obtaining the transfer function as before by a similar algebraic process,
one sees the analogy of the two approaches in which D has been replaced
by s. In either case the transfer function, Equation (8-19), will appear
in the form:

0 . n t 1-7 - + . .. . .. + 0- "
ge t1 s" , b - "+ .1 .+.-o (8-25)

where the coefficients a and b are constants.

The above transfer function (Equation 8-25) can be placed in its
actual solution form if the following (Heaviside) substitution is made:

S = J oW (8-26)

where w is the radian measure of frequency, w = 2xf. Equation (8-25)
then becomes the analytic representation of a frequency response*:

e am uo .. + aO (8-27)
6 .,, (Sw,.)*N .... ,b

Eauation (8-27) could have been obtained more directly through the 4
use of the Fourier transform. In this case the angular frequency, w, is 4"

used immediately rather than passing through the entire s (or z) complex
plane first and then restricting interest to the imaginary axis by
Equation (8-26).

* A frequency response is a special case of a transfer function,

where s has been replaced by jw. Frequency responses are normally
presented in graphical form.
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To recapitulate, the transition from time domain to frequency just
discussed is performed by either the Laplace transform of the Fourier
(series) analysis techniques (Figure 8-1). The Laplace is directly suited
for the equations of motion whereas the Fourier harmonic analysis can be
used on actual transient traces (such as flight test records). The transi-
tion from the frequency to time domain is demonstrated by the two techniques
given in references 1 and 2. The first is called "Fourier Synthesis" and
the second uses the Duhamel Integral.

Equations Laplace

of motion
Frequency
Responses

Tgm FrequencyTime CurveFitting 9
Domain Domain

Transient FourierAnalysis
Responses

Fourier Synthesis

Figure 8-1. Domain Conversion

8.2 Digital Machines

Digital computers perform essentially two basic types of operations:
matrix manipulation and step-by-step solution of equations. Matrix
operations are primarily restricted to linear equation type results
(determinant evaluations, etc.), whereas the step-by-step approach (with
iteration schemes) can be used to solve nu.12inear as well as linear
differential equations through sequencing the integrations, differentiations,
summations, etc.

Some of the more common types of high-speed digital computers suitable
for solving aeroelastic equations of motion are: IEM 701, !W 704, IBM 650,
IBM CPC, ERA 1103, NCR 102, DATATRON, READIX, SWAC, SEAC, DYSEAC, DINAC,
UNIVAC, JOHNTIAC, MARK SERIES.

8.2.1 Solution of Equations of Motion. The equations of motion
developed in Chapter III and in the examples of Chapters VI and VII
are linear in form. The solutions will be in the forms of frequency
responses or transient responses (to arbitrary inputs).
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8.2.1.1 Point by Point Solution to Obtain Frequency Res onses.
Consider Equations t8-16) to (8-18) whose coefficients are in the Fij
operator form; e. g.

F~1 D 2  N- D (8-28)

If Equations (8-16) to (8-18) are Laplace transformed and s replaced by
jw, then both the coefficients and variables will become complex functions
of w as follows:

F F (8-29)

-F (co F(w) - e(w

Then, if the following substitutions are made:

Fi

-F =F jF

~F ,
(8-30)F F -JFr

K =hR t Th 1 ,

S SeR (e = 0 being arbitrarily chosen);
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Equation (8-30)becomes (upon separating reals and imaginaries):

(9 + -a5 F -F Z +F -Fh.'R2 R I'2L IZ 13 r~ ' 3 : I D~-- I

' -I-F -i-F h F hz =o

(8-31)

-I *- I
E& F F -F - F
2 'R R 41.1 kz r -iL2J 25 R 1 S Z 1  +k L

F +F 6 + IL~ i!+ z 0Zh +F3 0
21 M 21Rr C 3 2 R

-- -"' F 6

Equation (8-31) contains real coefficients and real variable components,
all of which are functions of frequency, o . Note that the size of the
"matrix" has doubled.

By substituting a specific value of frequency,n, into equation (8-31)
we obtain a set of linear algebraic equations with real numerical co-
efficients.

The solution for each varIable (eR, el, Z3 Z, h , and hll)

in terms of 8 is in the form of a ratio of two determinants as in
eR

Equation (8-19). Substituting, in turn, other values of frequency,
ail of, etc., and repeating the determinant solution process, we obtain

the real and imaginary terms for e, Z, and h as expressions of B for a

sequence of frequency values. Since 8 appears as a factorable item, we
can find 9 , Z , and h as dependent upon frequency by first converting

e e e
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real and imaginary components into polar form. These can be represented
graphically as follows:

il yI P//h/

/ 9

/

Figure 8-2. Frequency Response in Graphical Form

where R Amplitude of h1 I - (8-32
whr = e Amplitude of 6e Iel

PH,., = Phase angle, the lag of h, behind r o arg 8e " arg ba

h 'R e
JSe = tn~ l

-t h ' since arg be

Once the frequency response of a system is available the transient
response of the system to any input can be computed by means of a Fourier
Synthesis. providing the Fourier representation of the input is known or
can be obtained. The transient response is obtained by evaiuating the
Fourier Series of the output over the desired time interval. The Fourier
Series of the output is obtained by transforming each coefficient of the
Fourier Series representing the input by the amplitude ratio and phase
indicated by this frequency response.
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As an example, consider the response of a system to a step input.
The output response can be written in Fourier Series form as

N
f(t) =Z b sin (nm t + PAn)n0 n

n=l

n = 1, 3, 5, 7, etc.

where
b=B xAR.n n n

ARn = Amplitude ratio of the frequency response data atfrequency nw.
0

PAn = Phase angle of the frequency response data at
frequency na .

0

o = Fundamental frequency whose period should be greater than
0 the time required for the transient output response to come

to a steady state value.
2O TFtsn td.

B = Sine coefficient of input at frequency f = F(t)sin(n °t)dt.n 0

For the case of a unit step input:

F(t) = a for O<t(T

and -a for T <t<T

tCTr

Bn -- and n = ,3, 5, 7, etc.nj(

8.2.1.2 Polynomial Solution of Transfer Functions. This step
results in the polynomial representations of transfer functions as shown
by Equation (8-25). The polynomials can be obtained from a determinant
by expanding by minors. However, expanding determinants which have
elements of the form:

2 
(8-33)
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by minors is a tedious task, considering that one not only is required
to multiply, add and subtract a larger quantity of terms, but that one
must also regroup the terms into respective powers of s so that the
determinant will now be of the form

a(s) -a ti 31" +- , -is", (8-34)

An alternate method for finding Equation (8-34) involves first the
digital computer evaluation of a set of determinants (each having
numerical elements rather oan elements similar to Equation (8-33)). The
numerical element form of the determinants is obtained by setting

So s2 , ... , Sn, in turn, just as was done in the point-by-point

frequency respunse determinant evaluation in the previous section. Hence
n + 1 numerical-element determinants are obtained for the digital computer
to solve.

The second step in the process is to curve-fit the n + 1 determinant
values found from the digital computer evaluation above. It is convenient
to use equally-spaced values in s above, for then curve fitting can be more
conveniently accomplished by use of Lagrange's Interpolation Formula* which
yields the desired polynomial form for Equation (8-34):

.(5)- , OL. (S) + D, L, +s .. . 83
(n)

w h e r e ' . . . . 1s ) -O s.. .

(8-36)
The first formula is known as Lagrange's Interpolation Formula and

(n)
the coefficients L (s) as the Lagrangian Coefficients. The values of

D, D . . ... Dn are the values of the determinant for the corresponding

values of s, i.e., s, sly sn. It is important to note that
0 n

Lagrange's Formula now becomes an exact (rather than interpolated) fit,
since exactly n + 1 distinct values of s were used to fit an nth order
curve, Equation (8-34).

Milne, W. E. Numerical Calculus, Princeton University Press, Princeton,
N. J. (1949), Page 67.
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Each L ) (s) is a polynomial of degree n which vanishes at s = s

s = ' s = sJB S = Bj+ls - 13n but at s =-s it assumes

the value of unity. From L jn(s) we get n + 1 polynomial coeificients:

L (S) = A 06 + E3 s I ....* + K°

L' + BI + -C 4 - r\, (8-37)

L + + C ++ V

where the coefficients of the final polynomial are given by Equation (8-35)

a. DAO + DI A, + D*'- An acoefficient of s

(8-38)
,8 ,B D. a + D,,'

£ ,,, :D 06 0  t D, B, ± 2 + ' ... t... , Bh - coefficient of sn-l

- DK0 + ,- constant term

The over-all polynomial a (s) is of order n and hence is determinable,

in a unique manner, from any set of n + 1 distinct points, a (si= Di,

i 0, ., n. Substitution of the n + 1 distinct values of si into the

polynomial while in the determinant form, and solving the resulting n + I

determinants yields the n + 1 values of D.. Using these n + 1 values ofi

D. to calculate Lagrange's D i are exactly equal to the a(s1 ). Hence, the

resulting polynomial form will be unique and exact, except for round-off

errors.

WADC TR 55-173

428



As an example of the Lagrange method, consider the characteristic

determinant of a typical helicopter:

1837.91 + 109555s -2458.19-1236.27s2 3928.66-220.184s -4579.8-35.349s
16579.8 48756.7 + 964082 48674-2687.43s-56.025s2 -55897.94-2550.51s

-95.484-4.03489s 0 27.5s + s 2  572 + 41.6s !

184.4128 -572 -572-4l.6s 27.5s + s2

(8-39)
In making use of the Lagrangian interpolation formula, we take the following

values of s; namely, s = 0, 1, 2; 3, 4, 5, 6, and 7. The Lagrangian

coefficients are (by Equation 8-39):

L0o(s)= (s-l) (s-2) (s-3)(s-4)(s-5)(s-6)(s-7)
( -1) (-2) (-3) ( -4) ( -5)7-) (-7)

= s7-28s6+322s5.1960s4+6769s3.13132s2=13069s-5040
-504o

l (s)= s(s-2)(s-3)(s-4)(s-9)(-6)(s-7)

S-27s6+295s -1665s4+5104s3-8028s +5040s
720 (8-40)

L2(s)= s(s-l)(s-3)(s-4)(s-5)(s-6)(s-7)2(11)(-(2)(-3)-4) -5)

s7_26s6+70s -1420s 4+929s3.5274s2+2520s

L (s) - s(s-l)(s-2)(s-3)(s- 4)(s-5)(s. 6) = s _21s +175s -735s +1624s3 _1764s +720s.
7 7(b)(9)(L)(3) (2)(1) 9o4o

The D's obtained by a digital calculation of the determinants

(Equations (8-39) for s = 0, 1, .... 7), were as follows:

D = 48.00306 x 1012

D1 = 615.9440 x 1012

D2 = 4434.382 x 1012

D = 15923-93 x 1012

D4 = 41450.65 x l012
D9 = 897641.8 x 10 12

D6 - 724938. x 1012

D7 = 3047074. x jO12
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The coefficient of s7 is (by Equation (8-38):

48.003055 + 615.944033 4434.38196 + + 3047073.867
5040 727 2o.40 5040

O12  O12  (--)
x 10 0.oo46 x 02 (8-41)

The coefficient of s6 is

48-003055(3 ) + 615944033 +72 4434.38196( -7 ) +.. .x) 10 = 0.05897 xO1

If the constant term D = 48.003 x 012 , thea the polynomial of Equation

(8-35) becomes:

1012 (.OO1046s7 +.05897s6+2.632s5+50.58s4+361.87s3+144.13s 2+ 8.646s + 48.003)

(8-42)

In using this.method, the amount of work is reduced considerably,
since use can be made of digital computing equipment to obtain the values
of the determinants. The L n(s) can be calculated readily with very little
work. The order of the polynomial (n) can be obtained by inspection of the
determinant and is usually equal to the sum of the highest powers of s along
the diagonal (since this is the usual way of arranging terms).

Once the equations have been reduced to polynomials of s or D, there
are a number of routine procedures available that are applicable to digital
equipment for extracting the roots of the equations, natural frequencies,
damping ratios, times to damp to half amplitude, etc. These dynamic para-
meters provide an insight to the stability of the system. Considerable
literature is available describing these various techniques and some of
the best known are given in References 3 through 6.

As an example, Equation (8-42) can be factored easily by a method
of successive approximations (see Ref. 5). A trial divisor of

d

works very well if the roots are well separated hnd if they are complex
conjugates. This method is easily mechanized for either desk or larger
machine calculators.
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The quadratic factors obtained therefrom can be factored further
to obtain the final roots. The roots are in the form

where actual .Iin coefficient
damping ratio critical damping coefficient

to = undamped natural frequency

n

W damped natural frequency = w -v - -C i

and t1/2 = time to damp to half amplitude

(or double amplitude if real part of the root

is positive) = .693

Equation (8-42) yields the following roots:

sI  = -.701,

s2.,3 = .14o f 1.426,

64, 5 = 3.78 t i 5.364 and

86,7 = 14.20 + i 35.91.

Root one indicates an aperiodic yet convergent mode with a t 1 / 2 = .693= .99

second. Roots two and three indicate a divergent and oscillatory mode with

= .312,

W = .45 rad/sec.,n
= .426 rad/sec., and

t/2 = .693 = 4.95 se.

(time to double
amplitude)

Roots four and five indicate a convergent and oscillatory mode with

= .934

0) = 14.75 rad/sec.,n

x = 5.32, and

t 1/2 = .693 = .05 sec.
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Roots six and seven also indicate a convergent and oscillatory mode with

= .368

W = 38.6 rad/sec.,
n
M = 36.0 rad/sec., and

t 1 = .693 = .049 sec.

14l.20

8.3 Analog Michines

Analog machines are classified into two general groups; namely, direct
analog and functional analog. The direct analog group includes such
examples as the network analyzer, the electrical potential field (or
electrolytic tank) representation for air flaw, the thermal analog, etc.
In general there is a direct correspondence between the physical quantities
and the analog simulator quantities. Table I at the end of this chapter
lists some of the more commonly used direct analog correspondences.

The direct analog representation of primary use in analyzing the
aeroelastic aircraft is the network analyzer. This can be used as an
electrical analog for structural stressing analyses which will yield
not only elastic influence coefficient data for the job imediately at
hand but also required strength design data. One of the better known
facilities is located at California Institute of Technology in Pasadena,
California.

The functional analog machine is set up to perform certain operations
as prescribed by the mathematical differential equations rather than to
obey similar laws of nature like direct analog. These operations inlude
addition, subtraction, (or differencing), multiplication, division; inte-
gration, differentiation, and function generation (such as square roots,
etc.). Since the functional analog computer is set up from the equations
Gf motion, the remainder of this section will be devoted to its use.
Anuther reason for this emphasis is that functional analog simulators are
more easily adapted to dynamic aeroelastic analyses, whereas the network
analyzer is reserved more for static aeroelasticity and steady-state
structural loading studies. Functional analogs are being used to solve
the problems that were originally unique to the network analyzer.
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Functional analog computers may be of several types, the more popular
being the electronic (operational amplifier) and the mechanical (differential
analyzer) computers. The electronic analyzer uses voltages (or current) for
variables and feedback amplifiers and other electronic devices, whereas the
mechanical analyzer uses shaft rotations for variables and ball-disc
integrators as principle units. The electronic has the advantage of
being relatively fast and easy to set up, whereas it is more susceptible
to break down than is the mechanical. Aside from this difficulty, the
electronic operational amplifier computer is more satisfactory for
aeroelastic stability and control studies, being more accurate than the
mechanical computer. Incidentally, even the electronic computer uses
some mechanical components (such as servo-type multipliers and mechanical
recorders).

Accuracy of an analog computer is usually a nebulous thing, since
the accuracy of end results depends not only upon the component accuracies
but also upon the manner in which they are intercoupled. Good component
design can yield accuracy of the order of 0.01 percent, while the overall
accuracy is likely to be of the order of 0.1 to 1 percent. (Digital com-
puting may be used to check overall accuracy and aid in uncovering errors
in programing). In the future analog computing elements may be replaced
by digital elements using converters to go from one field to the other.
This will also enable printing out analog results in digital form.

8.3.1 Application to Aeroelastic Analysis, The method used to set
up an analog computer for simulating the dynamic behavior of an aero-
elastic aircraft is demonstrated in the following pages. The simplified
mathematical model presented in section 8.0 will be used to demonstrate
the technique. I

Equations (8-4) to (8-6) are Laplace transformed into:

(8-43)

(8-44)

32 2 2 (8-45)
Assuming for the moment, the second derivatives s 0, s Z, and s h 8

are available, they can be integrated to obtain the lower and zero
derivatives:
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Figure 8-3 Analog Integration

Equation 8-43 is represented on the analog computer by a summing amplifier:

Figu;e 8-4 Analog Equation Addition

Equations (8-44) and (8-45) are represented in a similar way by two other
summing amplifiers. Now that the highest derivatives have been made
available, they can be put in as inputs to Figure 3-3.

Several problems arise to complicate the situation, which are:

1. Obtaining the right signs of variables,
2. Determining the appropriate gains (constants),
3. Scaling the variables to suitable amplitudes, and
4. Scaling in time (when necessary).

In order to change the sign of any quantity, one can simply pass it
through another amplifier, however, this procedure is apt to lead to
t.n excessive usage of amplifiers. Some investigation of the possible
choices of certain variables with different signs may be justifiable
in reducing the amplifier requirements.

WADC TR 55-173 434



£

The coefficients in Equations (8-43) to (8-45) govern the choice of
amplifier gains and associated potentiometer settings to be used. In order
to multiply a quantity by a constant greater than unity, an amplifier
with a suitable gain must first be used with a pot following it in order
to get a more accurate result.* This will be seen in the example soon
to follow.

Analog computers are limited in the amount of power which can be
transferred. In particular, amplifiers tend to limit above a certain
voltage depending upon the output loading. Most operational amplifiers
are designed to be linear up to 100 volts, hence one must "scale" the
problem so that no amplifier output (or variable) exceeds this voltage.
On the other hand, output voltages should not be so low as to be
cluttered up by extraneous noise. The lower limit can be determined by
checking the full scale percentage accuracy specifications for the
amplifiers under consideration.

Time scaling may be found convenient (and sometime necessary) in
analog analyses. Difficulty is encountered if as an example, an elastic
degree of freedom having a natural frequency much greater than five
cycles is to be investigated in conjunction with an aircraft having a
natural (short-termed) frequency much less than one cycle. The dynamics
of the higher elastic degree of freedom hardly couple at all with the
aircraft dynamics and can be neglected if the latter is to be investigated**.
On the other hand. if one is interested in the higher frequency regime, the
slower rigid body aircraft dynamics may tend to become negligible. In this
case a time scaling of the problem (slowing down the actual physical motion
on the computer) becomes appropriate yielding an analysis that appears to
be more like a flutter case.

A simple example will bring out scme of the scaling features (for
a more detailed example, see Appendix A of this chapter). Consider the
elastic degree of freedom as expressed by Equation (8-45) with a natural
frequency of one cycle per second:

(8-46)
IL

Suppose, for simplicity, that the mass normalized "spring" constant of
the elastic mode, Ph -9.52, and that the mass normalized damping constant,

P = -9.8; then:

Operational amplifier gains range from one tenth to 10 and possibly
larger, while pots usually are accurate to about three decimal places.

** The static "spring" effect due to a higher frequency mode may be
significant upon aircraft dynamics, however. This is included if
one only sets the inertia term equal to zero (damping already being
considered zero.
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IIe. 5A E F T (8-47)

Scaling the variables to suitable amplitudes can now be demonstrated.
Suppose the following maxima are known (or have been estimated) from the
physical situation:

max. = 10 ft., scale factor = 10 volts/ft. P

max. = + 75 ft./see., scale factor = 1 volt/ft./sec.

2 2
hI max. = 500 ft./sec. scale factor 0.1 volt/ft./sec.

(8-48)

One can conveniently assign the indicated scale factors to each which would
keep the voltage amplitudes on the computer within + 100 volts. An equiva-
lent method is to multiply each variable by a suitable factor and measure
this quantity throughout the analog schematic:

measure: 10 hl having a maximum of + 100 volts,

measure: hl having a maximum of ± 75 volts, and (8-49)

measure; .1 VI having a maximiml of - 50 volts,

The aRnlog representation for (the left hand side of).Equation (8-47)
becmes:

IoI

_, s0 __ !

Figure 8-5. Analog Representation for Eqn. (8-47)
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Gains, pot settings and signs now become evident if Equation (8-47) is
rewritten (recalling that amplifiers alternate signs):

(8-50)
A time scaling can be indicated by substituting

(8-51)

into Equation (8-47) (this results in the problem running ten times
slower on the analog computer):

(8-52)

The analog representation, in part, becomes:

Figure 8-6. Time Scale Change in Analog Representation

since

~hl 5 ft./see. 2 A h 7.5 ft./sec., and h 1 lO ft.

One is referred to Appendix A for a more detailed example of
analog setup procedures and to the bibliography at the end of this
chapter for further information.
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TABLE I

CORRESPOM1ENCE BE'TWEEN ELECTRICAL AND PHYSICAL QUANTTTIES

System ELECTRICAL FLUID

(Gas or Liquid)

Basic Sym Sym
Dimension Quantity Unit bol Quantity Unit bol

Electro-
Potential motive Volt e Pressure psia P

Force

Quantity Charge Coulomb q Volume or in3

Weight dis- X
placement lb W

in 3
Quantity Current Ampere q Volume or se X

Time Weight lb
Flow se-

____ ___ ___ ____ ___ ___sec

Quantity Current Ampere .. Volume or in"
Time Change sec We ight sec

Rate Flow Change lb 2

Rate sec

Quantity Capaci- Farads CE Compliance in CL
Potential tance 12•2

in 
CG

Pot-Time Resistance Ohm r Resistance lb-sec

Quantity 
in 5

sec r

in2  G

Pot-Time2  Inductance Heneries L Inertance lb-sec 2  ML

Quantity
2

sec
. 2
in

Pot-Tim. Impedance Ohm zE  Impedance lb-sec

Quantity in

sec z,
In
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TABLE I (Continued)

MECHANICAL THERMAL
System (Linear or Rotary)

Basic Sym Sym
Dimension Quantity Unit bol Quantity Unit bol

Potential Force lb f Temper- Degree
or ature Rankine T
Torque lb-in fR

in x

Quantity Displace- Entropy Btu
ment radian OR

" __... ....__ I ___

Quantity Linear or -in Entropy Btu
Angular sec °R-sec

Time Velocity 1 8 Flow ______ _

Quantity Linear or in 2 Entropy Btu
2sec

Time2  Angular 1 Flow oRsec2

Acceler- - 2 Change
ation sec Rate

in/Quantity Linear or CM Heat Btu
lb Capaci- BR

Potential Angular lb-in CP tance

Inverse bitac
~Spring const

Pot-Time p Linear or lb-se rM Thermal oR2_sec rT

Quxantity Rotation- in rR Resist- Btu

al Dampirg lb-in-sec ance

Pot-Time2  Mass or lb-sec 2  m Thermal OR2 ".
Moment of in 2 Inertia -te

Quantity Inertia lb-in-see I Concept Btu

Pot-Time Mech or lb-sec z Thermal 0R2-sec ZT

Quantity Rotation- in Impedance Btu
al. zR
Impedance lb-in-sec R
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APPENDIX A

Mechanization Procedure for Analog Computers-Helicopter Example

Included in this appendix is a numerical example* which demonstrates the
analog setup procedure. The helicopter in hovering flight and having three
degrees of freedom is used.

The equations of motion of a hovering helicopter may be written as

follows :**

/ V U, AK +

HaU r, L,, C8U I=- VX.+±(HA-

(2)

M (M t + M (

.l Ye-* ( d a, Y81 '

(3)

J. B. Rea Company, Determination of the Optimum Autopilot Design for Sta'oi-
lizing the Longitudinal Mode of a Helicopter in Hovering Flight, published
by Beckman Instruments, Inc., Richmond, California, Application Bulletin 5.

** Nikolsky, A. A , Helicopter Analysis, John Wiley and Sons, New York, 1951,
Page 219, Equations 6.31b, 6.32b, and 6,33b.
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where

the longitudinal linear velocity of thehelicopter c.g.,_ft R

I, = the longitudinal angular displacement

rotor tip path plane angle

BL, = swash plate or control element angular displacement

5 = dt operator

The following transfer functions for pitch angle to swash plate input
and forward displacement to pitch angle respectively were derived from these
equations.

(xi .139 (s +.O01 61)(s + 6.89 + J24. 6 )(s + 6.89-j24.6) deg.

B1 (s + .712)(s + 13.3)(s -.14 + J.425)(s -.14-J.425) deg. (4)

Xo = 2.29 (s + .00550 + jl.70)(s + .00550 - Jl.70)(s + 8.60 + J25.2) (5)

al s(s+ .00161)(s + 6.89 + J24.6

(s + 8.60 - J25.2) ft.

s + 6.89 - J24. 6 ) deg.

As may be seen from equations (4) and (5), the various roots of each of
the two denominators are widely separated. Ftom preliminary investigations
it was found that the larger roots contribute practically nothing to the
dynamics of the helicopter except gain. It was further determined that
neglecting the larger roots does not result in important changes in heli-
copter plus autopilot over-all response over the range of networks and gains
which were used for autopilot stabilization. Thus equations (4) and (5) were
reduced to:

= 6.82 s + .00161 deg. (6)

B1  (s + .712)(s-.14 + J.425)(s-.14-J.425) deg.

and

x = 16.4 a + .00550 + Jl.70)(s +.00550 - Jl.70) ft. (7)
A. s(s +.00161) deg.
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Aui.<jiot.. +ta were user' to obtain thr following equation representing
the auto7X:r.±.t serv:o motor dyismics.

KB, M )g.

where

5 = swash plte control angle due to autopilot correction
gna!. ( degrees)

e = autopilot correction signal to the servo motor (volts)

= servo motor gain constant (deg/volt.)

A double lead-lag network of tlhe form! IK (s + T-1 (  7. -
(s + l0) (9)

was chosen in order to provide s' Uficient lead with a 1 and x feedbacks

to obtain acceptable system natu ?I frequency and damping.

Equations (6) and (7) were re-kitten in the following form Jn order

that they could be mechanized in a st ,iight orward manner oa the computer.

2\

-s = (.43s + .0011 + .143)a I .1 • '1)B1  (10)

S B,

s\

-Z 2 .00!.61 sxo - (17.8s2 + .194s + 5,... (11)

Equation (8) may be mechanized using one inte ra trr amplifier as follows:

B, I'
e s +2.3

e\

-B, = (K.e + 2. 1
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Figure A-i

Equation (8) is most conveniently mechanized using complex impedances
on input and feedback paths of a D-C analog amplifier since such an arrange-
ment enables one to vary the several cascaded time constants of the autopilot
separately and independently without changing the feedback gain K in the

process. For each term of the form (s + l/T) / (s + 10) one amplifier may
be used.

e,.

Figure A-2

I.

In Figure A-2, if A o7 then

S+ 0
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7 If Ci C°,

1
eo s + R

then e

0 i 0

RR

andif Ri = =

1
---C 0 ,

then 0- T
ei s + 10

The final mechanization is shown in Figure A-3. The input-output
calibrations are as follows:

B , = I -r - , J a i 1 ! - -1' x 1 0 f t1 de.' ~ dg'o l0 ft.

Since x0 could have easily have a displacement excursion of several

hundred feet during transients, the x° output gain was reduced by a factor

of 10. This change eliminated the possibility of amplifier limiting in the

x section of the computer.
5
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CHAPTER IX.

FLIGHT TESTING

9.0 Introduction

9.0.1 Objectives: The theoretical determination of the dynamics of
aeroelastic aircraft, as described in the preceding chapters, is a complex pro-
cess. Any numerical solution is necessarily an approximate one, subject to
various errors due to: representation of the aircraft motion by simplified
(e.g., linearized) equations of motion, approximation of continuous functions
with values at discrete points, estimation of the coefficients of the assumed
equations, etc. Indeed, it is difficult to predict with accuracy the motions
of a rigid aircraft in high-speed flight. Addition of degrees of elastic free-
dom so increases the uncertainty of the results that full-scale verification
by flight testing is a practical necessity.

Of course, it might be said that measurement in flight of the dynamic
response of an aircraft, rigid or elastic, obviates the need for the laborious
prediction by theoretical methods. When the mission is solely that of deter-
mining the dynamic characteristics of a particular aircraft at specified con-
ditions, this is true. Such an approach has been followed to obtain airframe
data on which to base automatic control design. This merely attests to the
need for prediction methods available to the development engineer. In any
event, full-scale testing comes far too late in the development cycle to pro-
vide timely information for the designer. Its goals should be to verify the
predictions and, perhaps most important, to lead to improved prediction tech-
niques.

9.0.2 Comparison of Experiment and Theory. Four forms of verifi-
cation of the predicted dynamic response require the comparison of theoreti-
cal and experimental values of (a) transient response to known disturbances,
(b) frequency response, (c) transfer function coefficients, and (d) aerody-
namic, structural and inertial coefficients (i.e., coefficients of the equa-
tions of motion). The methods are listed in order of increasing value to
the aircraft designer. As the value of the result increases, so does the
difficulty of obtaining it.

Comparison of transient responses (time histories) measured in flight
with those obtained by analytical means is a straightforward approach to the
verification of predicted responses. It makes the best use of analogue simu-
lator techniques, with a few reservations. The usual analogue computer approach
is to determine the response of the aircraft to step or symmetrical pulse de-
flections of control surfaces. In practice, these inputs cannot easily be
produced. Moreover, they are often not the most desirable inputs. They may
fail to excite one or more of the fundamental modes of the aircraft or, as
with the step input, will create a steady-state error from the trim condition.
It is nevertheless possible to verify the predicted equations of motion "ex
post facto" by generating inputs to the analogue computer which match those
applied in flight. The subject of desirable inputs is discussed in more de-
tail in Section 9.3.

The comparison of experimental and theoretical data in frequency res-
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ponse form is generally more convenient than a transient response comparison
because it displays explicitly the agreement. or disagreement for each clearly
separate mode.* It thus helps the engineer to decide which modes of motion of
the aircraft need more attention in terms of refinement of prediction techniques.
Computation of frequency response by analogue computer methods is considerably
less convenient than is the computation of transient response. Preparation of
arbitrary inputs (for read-in to the computer), low accuracy, and inability to
store interim results are major drawbacks to the use of analogue computers for
frequency response analysis. Perhaps the greatest disadvantage is its in-
ability to handle transients which do not vanish rapidly. The digital com-.
puter can be used here to good advantage.

Comparison of transfer coefficients obtained from theory and test carries
the above procefure an additional step, with further benefits to the researcher
and designer. Ideally, it permits separate comparison of each coefficient of
each mode of the system transfer function. In practice, if more than a few
coefficients must be determined from the flight test data the solution becomes
difficult. For an aeoelastic aircraft with any elastic modes included, this
difficulty will certainly be present. Improved techniques for the evaluation
of transfer function coefficients from flight measurements may give this approach
more practical utility in the future.

Comparison of the stability derivatives (coefficients of the equations
of motion) as obtained from theory and from flight test can be considered as
the final refinement in the correlation process. The determination of these
coefficients from flight data is, of course, beset with the difficulties men-
tioned above, and more. Separation of some of the stability derivatives is
virtually impossible. In many cases the magnitude of the instrumentation
installation and the extreme accuracies required will impose practical limits
on the determination of the coefficients. Reference 1 gives a method for find-
ing the maximum number of coefficients which may be determined and the co_-

ditions under which this maximum number is obtained. Much research remains
to be done on the semi-inverse solution of stability equations to yield the
coefficients (stability derivatives), as pointed out in Reference 2.

9.1 Data Requirements

9.1.1 General. In Section 9.0.1 it was pointed out that the objectives
of flight testing were two-fold: (a) determination of the dynamic characteristics
of a particular aircraft and/or (b) verification of prediction theory for air-
craft dynamics. in some instances both objectives may not be realized because
of limitations of time and money. In general, data requirements of objective
(a) are of lesser magnitude than those of (b), and the two will be discussed
separately. It should be realized, however, that the two objectives might
well be combined in one program. To date only a limited amount of flight
research on aeroelastic aircraft dynamics has been conducted (References 3-5)
and the need for more such work is great.

9.1.2 Data for Evaluation of Flight Dynamics. As with the rigid air-
craft, evaluation of the dynamics of aeroelastic aircraft requires measure-
ment of the response of its center of gravity. The primary items are vertical

Where two modes are closely coupled, it may not be possible to separate
them effectively.
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(normal) and lateral acceleration and angular velocity about all three body
axes. Angles of attack, a , and sideslip, p , are desirable, but present
measurement problems (see Section 9.4). It must be recognized that the free-
stream air direction obtained from any measurement applies principally to the
point of measurement. For aeroelastic aircraft the variations of relative
wind are of considerably greater magnitude than for rigid aircraft; however,
this should not lead one to the conclusion that such values of a and P are
valueless. Some reference value of a , for example, is necessary from which
to determine the a distribution along a flexible, swept wing. An indirect
procedure is to compute angle of attack from measured values of normal accele-
ration and pitching velocity (or sideslip from lateral acceleration and yawing
velocity). Because of the limited accuracy presently obtainable from direct
measurement of air direction - within 1/4 degree at best, more often no better
than ±1/2 degree accuracy -- the indirect approach is preferred by many.

Control surface position measurement poses a problem not shared by the
rigid airframe. Because it is subject to spanwise twist, a single point of
measurement will not generally suffice. Too, the twisting is a function of
indicated airspeed (or dynamic pressure, q) and no single point on the control
surface or its torque tube represents a mean value of the control surface de-
flection at all flight conditions.

Of importance to the design of automatic flight controls is the response
of the aircraft to a command input to the control surfaces. Such input command
is generally in the nature of a displacement of a servo valve. Thus it becomes
important to measure such displacement at the valve or at some point rigidly
connected to it. Under manual control by the pilot, inputs should be measured
such that they are representative of the stick, wheel or pedal displacements.
If there is any suspicion of significant lag between the cockpit controls and
the surface actuators, it is wise to measure at both points.

Of major importance in the elastic airframe is the necessity for mea-
suring accelerations and/or angular velocities at points on the structure
where it is intended that sensors for any automatic control subsystem may be
located. It is quite possible that the sensor will feed back a signal which
is markedly different in amplitude and/or phase than was anticipated.. In one
situation, an otherwise stable airplane was made dangerously unstable because
of the effects of fuselage side bending on the yaw rate feedback of the auto-
pilot. The flight test program which followed (Reference 6) resulted in a
retrofit affecting numerous airplanes. In the case in question, the yaw rate
gyro was relocated and roll rate feedback to rudder was added; also, other
improvements to the autopilot were made. Had the dynamic response of this
aeroelastic airplane been determined at an earlier date, much of the time
and expense of a retrofit program could have been avoided.

Measurement of the quantity of fuel in each tank is necessary to deter-
mine changes in weight, center of gravity, and moments of inertia. Determina-
tion of the initial (take-off) values of the parameters is discussed in Section
9.2.

9.1.3 Data for Checking Aeroelabtic Theory. The requirements for
flight data to check theoretical predictions and wind tunnel tests include
practically all of the foregoing plus much more. Deformation of elastic
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portions of the structure, pressure distribution over these portions of the
aircraft, and accelerations at numerous points, are items of which measure-
ments may be needed. The extent to which these are accounted for is depen-
dent upon the extent to which theoretical calculations are to be checked. An
example of such a test program is given in References 3, 4 and 5.

Determining deformation of the structure by optical means is the most
straightforward approach. The camera(s) must be located at a rigid reference
point on the aircraft, such as on the upper or lower fuselage near the main
wing spar juncture. Targets must be provided at the points whose deformations
are to be measured in order that the perception of such deformation is suffi-
ciently sensitive. For the wing with negligible chordwise bending, a chord-
wise pair of targets for each of a number of spanwise stations is sufficient.
This condition is met for high aspect ratio wings with ribs aligned in'the
streamwise direction, such as the B-4-7 air-lane. The nmber of spanwise
stations required is determined by the number of mode shapes to be accounted
for: the more complex the mode shape, the greater the number of spanwise
measurements. In view of the problem of obtaining optical measurement of
many deflections, it is not considered practical to attempt more than the
number of measurements necessary to define a few important modes. In terms
of airframe dynamics, these are the low frequency modes. The existence of
an elastic axis simplifies the problem in that it permits describing the
aeroelastic deformations in terms of deflections of the axis. The low-aspect-
ratio wing (e.g., AR <4) of stressed-skin construction is not amenable to
elastic-axis representation. Its chordwise elastic deformations cannot be
neglected and, therefore, the problem of deformation measurement necessarily
becomes more extensive. It is doubtful that satisfactory optical measurements
can be obtained in flight for this type of structure.

Determination of structural deformation by means of a pattern of strain
gages is most practical for the beam-type of structure with unstressed skin,
biut becomes difficult and less accurate for more complex types of structure.
Because this type of construction is no longer in use for high-speed fighters
and bomber aircraft, the use of strain gages for deformation measurements is
of lesser value than are other methods. In the tests of Reference 5, the

strain gages were used primarily to determine structural resonance frequencies
rather than for deformation measurement.

Another approach to the problem of measuring elastic deformations in-
volves measurement of accelerations at various points in the structure and

at a reference point such as the wing-fuselage juncture. Double integration
of the accelerations will yield the time history of displacements at each
point, the displacement of a point 8 (x, y, t) less that of the referenceP

point 8o(o, o, t) gives the relative deformation b po(X, y, t). Clearly,

the presence of a steady-state error in the measurement of acceleration will
create an increasing error in computed displacement; however, this should not
be too troublesome where the deformations of interest are of a known periodic
nature. It is essential that the accelerometers have a high order of accuracy
and important that the frequency response characteristics be suitably chosen.

Determination of load distribution by means of strain gages is subject
to the limitations already discussed. In addition it requires a laborious
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calibration procedure to correlate loading at each station with deformations
at numerous stations on the structure. The loads thus determined represent
the sum of aerodynamic and inertial loads. A more direct approach is the
measurement, by means of an array of pressure taps, of the pressure distribution
over a wing (Reference 7). Determination of the airload distribution, the
shear forces, and the bending and torsional moments can then be made. This
procedure isolates the aerodynamic loading from the inertial effects.

9.2 Ground Tests

9.2.1 General. In order to achieve the goals of flight testing,

certain supporting tests must be carried out on the airplane on the ground.
Included among these are the determinations of weight (or mass), static
momenLs (center of gravity), moments of inertia, and principal axes. Other
tests, which may not be necessary to the flight testing directly, may be de-
sired for correlation with various theoretical predictions. Examples are the.
determinations of vibratory elastic mode shapes and frequencies and measure-
ment of structural influence coefficients. The calibration of test equipment
and instrumentation is, of course, a form of ground testing; however, it is
not discussed here, being dealt with (albeit briefly) in Section 9.4.

9.2.2 Weight and Balance. The measurement of aircraft weight and
determination of the horizontal location of the center of gravity certainly
needs no description here. All that needs be said is that considerable care
should be taken to insure accuracy, particularly if the determination of sta-
bility derivatives from flight data is to be undertaken. The static longi-
tudinal stability derivative, C is directly dependent upon the static

ma
margin, (c.g. - n.p.). An additional measurement required for dynamic flight
testing is the vertical location of the center of gravity. This can be found
experimentally by the method of Reference 8; however, it can generally be
determined by computation (or the manufacturer's detailed weight report, if
available) with sufficient accuracy.

Experimental measurement of the moments of inertia in pitch, roll and
yaw is described in several NACA reports and others. The technilues vary:
swinging the airplane as a pendulum or oscillating it about a fulcrum with
restoring force prpvided by springs are the two major methods. Refer to
References 8 - 12 for detailed information on these methods. Reference 13
includes the determination of the products of inertia and inclination of
the principal axes from the reference (geometric) axes. Computation of the
moments of inertia of an airplane piece by piece is a tedious task which is
possible only if the weight and location of each element of the structure is
accurately known. Such information is obtained by the manufacturer during
the construction of the aircraft. Of most importance, the computed moments
of inertia are unconfirmed values which are subject to cummulative errors in
mass and moment arm. Despite such limitations, computed values of the moments
of inertia must be used in many instances, particularly for very large air-
craft which cannot be swung or oscillated.

At least one attempt has been made to determine the pitching moment
of inertia from flight test data. The frequency response of a B-25J air-
plane was measured by the direct oscillation method on two flights. The
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flight conditions were identical insofar as possible, except for solid
ballast providing a known difference in mass and pitching moment of inertia.
Center of gravity and moment of inertia were maintained constant during each
flight by means of careful scheduling of fuel consumption and in-flight trans-
fer of liquid ballast. By simultaneous solution of the equations of longi-
tudinal motion, the moment of inertia was determined. In spite of consider-
able care in carrying out the experiment, the values obtained for I lacked

yconsistancy and failed to agree even reasonably well with I yas determined

from ground tests. Because of the far greater difficulties in fuel sche-
duling of jet aircraft and because they do not generally permit the inclu-
sion of large ballasting installations, the flight test method of determin-
ing moments of inertia is considered to be unsatisfactory.

Fuel sloshing in partially-full tanks is doubtless the greatest source
of error in the computation of moments of inertia in flight. Assuming that
the fuel acts as a solid mass leads to considerably erroneous results for
pylon mounted tanks, as demonstrated by some much-needed research by Reese
and Sewall (Reference 14). For internal tanks* the ratio of the effective
moment of inertia to that of an equivalent solid mass varied considerably
with the tank fineness ratio (length/height); however, Reference 14 indi-
cates that analytical solutions using the "solid" fuel assumption (no slosh-
ing) offers a good engineering approximation for any degree of tank fullness.

9.2.3 Structural Vibratory Modes. Experimental determination of
the modal shapes and natural frequencies of the aircraft structure can be
better carried out by ground tests than in flight. Except for very low
frequency modes, the absence of aerodynamic damping will have little effect
on the measured results. The general procedure is to vibrate the aircraft
over a range of frequencies by means of electro-magnetic or hydraulic shakers
and to measure the motion of the structure at various points. A wide variety
of means are available for measuring the structural motion, including almost
all of the many position-measuring instruments. Thorough discussion of ground
vibration testing may be found in References 15 and 16.

9.2.4 Structural Influence Coefficients. When the structure under
consideration does not possess an elastic axis (e.g., a low aspect wing such
as a delta wing) it may be treated as a modified flexible plate. Such an
approach makes use of the reciprocal equations (4-1a) and (4-1b). Applying
a force at a point J = 1 (Figure 9-1), it is possible to measure the resulting
deflections at points i 1, 2 ........ From these can be determined the de-

filectiouns per unit force Pl, giving the flexibility coefficients A11 . Repeat-

ing the loading at each point j will provide additional series of deflections
from which one can obtain the matrix of coefficients A ij. The deformations hi

can be determined from a given loaddistribution P. by means of (4 -1a).

Clearly, the stiffness influence coefficients kij, cannot be obtained in

such a straightforward manner. As indicated in Section 4.1.1.1, the load

* Centrally mounted with respect to the axis of rotation in the experiments

of Reference 14.
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Figure 9-1. Influence Coefficient Stations on a Delta Wing
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distribution P- resulting from a deformation pattern h,, as expressed by
i Ji

(4-1b), can be determined by inversion of the matrix of flexibility in-
fluence coefficients into the matrix of stiffness coefficients. This is
expressed by (4-3) and assumes that there is no residual boundary con-
ditions, structural slippage, local plastic deformation and other nonconser-
vative effects.

The experimental equipment needed by measurement of the flexibility
influence coefficients is similar, in part, to that required for defining
the mode shapes. The main difference is in the application of loads. Excit-
ing modal vibration is a dynamic process, requiring a knowledge of the ex-
citation frequency but not of the force applied. Determining flexibility
coefficients, on the other hand, requires static loading of a known magnitude,
This is best carried out with hydraulic rams which apply loads to the structure
through compression or tension pads. The details of experimental procedures
is given in References 15 and 17.

9.3 Flight Test Techniques

9.3.1 Static Stability Tests. The various flight test techniques for
determination of static stability derivatives of rigid airplanes should be
well-known to the reader and will not be discussed here. References 18 and
19 cover the subject well. Certain modifications are necessary when dealing
with an aeroelastic aircraft. Contrary to the common assumption for rigid
aircraft, some of the stability derivatives will vary with dynamic pressure,
q . The derivatives are functions of Mach number in either case. As an
example, Ci  , rolling moment coefficient due to aileron deflection, de-

creases with increasing q because of the twisting of the wing is such as to
reduce the angle-of-attack change produced by the aileron. As a result, C I

is not a constant coefficient but is a function of indicated airspeed. In
short, the results of static stability flight testing include the effects of
static aeroelasticity and cannot be directly compared with the theoretical
"rigid-body" condition.*

The fact that the derivatives are not independent of q or Mach number,
except at low speeds, invalidates many of the common steady-state tests. For
example, the static longitudinal stability has generally been determined by
measuring the elevator force required to change airspeed from the trim con-
dition. This procedure is predicted on the assumption that Cm  is independent

of a over an appreciable range of a . This not a valid assumption in the
transonic region. The major advantages of static stability tests, when valid,
are that (1) they tend toward more accuracy by virtue of excluding other
variables and (2) they reduce the number of unknowns when the dynamical equa-
tions are solved for the remaining stability derivatives.

* Even for rigid airplanes the stability derivatives are not constant co-

efficients in the high subsonic and transonic regions, but are nonlinear
functions of Mach number.
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9.3.2 Dynamic Stability Tests. There are presently two basic techniques
in use for the flight determination of aircraft dynamic response to control
motions: sinusoidal oscillation and transient response. In the former, the
frequency response is measured directly by oscillating one of the control sur-
faces at a number of frequencies sufficient to cover the required spectrum.
To create sinusoidal motions of the control surfaces requires some mechanical
driving force such as an autopilot. Also, the control system must have a linear
characteristic in order that the sinusoidal input be transmitted to the control
surface undistorted. If the aircraft has an unstable, oscillatory mode, the
control surface must not be oscillated near the resonant frequency as the res-
ponse will result in a dangerous situation. The major advantage of this method
is its accuracy. Each frequency is individually excited, leading to a high
signal-to-noise ratio for the measured response. As a drawback, the procedure
is time-consuming, resulting in significant variations in aircraft mass and
center of gravity during the time required to explore a set of frequencies.
References 8 and 20 give a thorough description of the sinusoidal oscillation
method.

Because of their high fuel consumption rate and inflexible fuel manage-
ment, modern fighter aircraft cannot practicably exploit the sinusoidal os-
cillation method; therefore, the transient response to an "arbitrary"control
deflection is measured. The input is generally in the form of a pulse or a
step. It is "arbitrary" only in the sense that it need not have a precisely
defined form, a6 in the case of sinusoidal oscillation. The general form of
this input pulse should be such as to excite sufficiently the aircraft response
throughout its active harmonic spectrum. The need for this will be clarified
by the discussion in Section 9.5 of the transformation from transient response
to frequency response. When the aircraft being tested exhibits an instability
such that the flight attitude becomes rapidly untenable, it becomes impossible
to obtain records of sufficient duration to permit analysis. It is possible
to ameliorate this situation by stabilizing the aircraft through an autopilot
or damper system. The degree of stabilization should not be such as to nullify
the motion or we should be faced with the situation of having a continuous in-
put with zero, or near-zero, rsponse. It would be best to provide only a
slight margin of stability so that the input and responses tend to vanish in
approximately the same finite time. Otherwise, the problem of transforming
the data into frequency response form becomes difficult, sometimes impossible,
as will be shown in Section 9.6. Without going through a rigorous proof, it
should be apparent that the foregoing restrictions on the test method apply
equally whether the results are analyzed in the time plane or the frequency
plane. The transformation from time to frequency is merely a mathematical opera-
tion which does not add to or subtract from the information contained in the
measurements.*

The proper shaping of input functions is a matter worthy of discussion.
As previously stated, it is important that all of the aircraft modes of in-
terest be sufficiently excited to produce measurable response. The unit im-
pulse has the convenient property of having a flat spectrum (i.e., all fre-

It is possible to lose information in a transformation if it is not

carried out with sufficient accuracy.
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quencies are present in identical magnitudes) as shown in Figure 9-2. Such
a function is not physically realizable; however, approximations to it by

AVt
- _ _ _ _ _ _ _-l

7At

-~ 0

Figure 9-2. Frequency Spectrum of Unit Impulse

triangular impulses can be useful. Figure 9-3 illustrates the effects of
pulse duration on the frequency spectrum.* The triangles are of equal area,

t C

t-

Figure 9-3. Frequency Spectra of Triangular Pulses

giving an equal zero-frequency component in the a)-plane. It can be seen from
Figure 9-3 that the harmonic content of the pulses vanishes at regular intervals
of frequency, thus no excitation of the aircraft is produced at these frequen-
cies. Of more real interest, there is insufficient disturbance created in the
vicinity of the zeroes to insure measurable input and response. A means of
overcoming the zeroing or "bottoming" of the frequency spectrum is by the use
of unsymmetrical pulses, as illustrated by Figure 9-4. This technique extends
the usable bandwidth of the input as compared with a symmetrical pulse of
equal duration. Reference 21 contains a good discussion of the shaping of
input functions. Additional transients and the associated transforms may be
found in References 21-23. In summation, the selection of suitable input
functions should be based on the transfer function characteristics of the air-
craft to be tested. Where the bandwidth of interest is wide, as for an aero-

* The curves have been omitted for negative values of w being of no physical

significance. They would appear as reflections about the ordinate of the
positive w values.
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Figure 9-4. Frequency Spectrum of Trapezoidal Pulse

elastic aircraft, it may not be possible to excite all modes sufficiently

with a single input pulse. The spectrum can then be covered by two or more

inputs, each covering a different portion of the desired spectrum.

9.4 Instrumentation*

9.4.1 Sensor Locations. The location of each sensing element generally

becomes a compromise between the position at which the measurement is desired

and one which physically permits installation. Mounting of accelerometers in

the wing structure, for example, must be made on a spar or rib near an in-

spection door in order that the instrument be accessible for calibration or

replacement. The same holds true for other sensors. Because the center of

gravity changes in flight as fuel is consumed, measurement of c.g. accelera-

tions at all times cannot be practicably obtained. Placement of accelerometers
at the mean location of the e.g. during the test period is usually satisfactory.

It is important that possible spurious inputs to the instrument 
be kept in mind

and such effects be avoided or corrected in the data. 
As an example, a lateral

accelerometer above or below the .g. will sense rolling accelerations about

the .g. in addition to the lateral acceleration of the e.g. 
If the accelero-

meter is placed outside te plane of symmetry (y t), rolling velocity will

impose centrifugal forces on the sensing element, but 
at twice the cyclic

frequency of the rolling motion.** When physical restrictions 
make it impossible

to place acelerometers at the c.g., a study of the probable 
errors due to spur-

ious itputs will greatly aid in selecting the best compromise location. If a
location can be found for which sensing errors are negligible, 

a considerable

saving in data correction will result.

n References 24 and 25 contain more detailed discussion 
of the subjects

covered in this section.

t isThe centrifugal force is outwar from the center of rotation, regardless

of the direction of rotation, thus it goes through two 
cycles for each

cycle of rolling oscillation.
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The measurement of angular velocities at the c.g. is in some respects
simpler than that of determining linear accelerations. All points reasonably
near the c.g. are coupled to it with sufficient rigidity to permit locating
rate gyros. High quality floated gyros are available which respond negli-
gibly to other than angular velocities about their input axes. They must,
of course, be mounted in the aircraft with great care to assure that the out-
board locations- such as the wing tips or tail, do not present alignment diffi-
culties. As the structure flexes, the input axis of a gyro will be continuously
tilted to an orientation which is unknown. Whether this effect is sufficiently
serious to limit the use of rate gyros in favor of accelerometers at outboard
locations must be decided for the individual case, taking into consideration
the maneuvers to be performed, the sensitive axis and the probable errors which
will result.

Probably the most difficult measurements to obtain with accuracy are
those dealing with relative wind direction (angle of attack and sideslip).
Aeroelasticity further complicates the problem. Much experimentation has
been done on this subject with the result that relative wind sensors are
mounted on nose booms in very many instances. Most other fuselage locations
suffer from flow disturbances which render them unsuitable for accurate de-
termination of free-stream relative wind conditions. Wing or tail-mounted
sensors are subjected to errors induced by aeroelastic distortion of the air-
craft structure. When the nose-boom location is subject to motion relative
to the aircraft reference point (c.g. or wing-fuselage junction) it becomes
necessary to correct the data for such effects. The boom must be designed
for considerable stiffness* to minimize errors due to its flexure. This
requireraent leads to a short boom which compromises the need to put the
sehsors ahead of the pressure field of the fuselage.

Accurate measurements of airspeed and Mach number are dependent upon
a good static pressure source. The statements regarding suitable relative
wind sensor locations generally apply. Unless there is time available to
investigate alternate sources -- and this can be a lengthy, or possibly
futile, search -- the best °solution is a nose boom location for the pitot-
static pressure sources.

9.4.2 Sensor Characteristics, The requisite characteristics of sen-
sitivity, linearity, environmental stability and ruggedness of flight test
instruments apply equally to testing aeroelastic or rigid aircraft. The ex-
tended frequency range of interest for aeroelastic testing may require
instruments with higher natural frequencies; where only the lower elastic modes
are to be investigated, the frequency characteristics suitable for rigid body
dynamics measurement will generally suffice. If the natural frequency of a
sensor is too high, the signal-to-noise ratio will be reduced; readability
and therefore accuracy, will suffer. On the other hand, too low a cut-off
frequency is accompanied by excessive phase lag in the signal. A desirable
situation would be identical phase characteristics of all sensors, eliminat-
ing the need for relative phase correction of the data. To achieve this,

Natural vibration frequencies of the boom and sensor must be well above
the range of aircraft frequencies being investigated.
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such zero-lag* instruments as position transducers should have a phase lag
created by low-pass filtering of the output signal.

9.4.3 Recording System. While the details of data recording are out-
side the scope of this work, certain comments are felt to be appropriate. Too
much emphasis cannot be placed on the need for compatibility of the data re-
cording with the analysis to be performed. Dynamic flight testing involves
the reduction and analysis of large quantities of data, even in the simplest
of cases. When the aeroelastic properties of an aircraft are included, the pro-
blem grows rapidly. Wholly manual methods of data processing are ruled out
as being overly time-consuming and expensive. Access to automatic or semi-
automatic data transcription equipment and an automatic computer is a minimum
requirement. The optimum system, in terms of rapid data processing, is digital
recording on magnetic type. Although no equipment of this type is presently on
the market, development of at least two systems is currently underway and the
finished products should be available in the very near future. Analogue mag-
netic recording is available and can be made compatible with digital computation
by analogue-to-digital conversion. Oscillographic recording of data is the most-
used technique. Adaptation of the data for digital computation cani be carried
out by semi-automatic transcribers which convert the data into punched-card
form.

In summary, the recording system should be matched to the analysis pro-
cedures and computing equipment available, or vice versa. Failure to do so
can result in failure of the flight test program to provide useful information
in a reasonable time.

9.5 Flight Test Procedures

9.5.1 Flight Conditions. Because of the great expense of flight test-
ing, it is important that a maximum of data be obtained wJth a minimum of
flying. This rules out the measurement of dynamic, aeroelastic responses at
all combinations of altitude, airspeed, Mach number, etc. By proper design
of the flight program, the effects of each of the important parameters on
aircraft response can be evaluated. Figure 9-5 gives a sample of a rather ex-
tensive pattern of tests to investigate the effects of Mach number and dynamic
pressure on dynamic response of an elastic supersonic airplane. The series
of test points at q = 350 lb/ft2 is designed to show the effects of Mach
number with aeroelastic effects minimized. At q = 1000, high Mach number
effects can be measured. The sets of data points at constant Mach number
should distinguish the effects of dynamic pressure on the aircraft response
and the structural distortion.

Fuel scheduling must be planned to give a maximum of test time with
variations in c.g. and moments of inertia kept as small as possible. Many
current aircraft have automatic fuel management, not controllable by the pilot.
Under such circumstances the test period may be severely limited by the normal
variations of c.g. and inertia, resulting in numerous test flights.

* In the frequency spectrum of aircraft dynamics, the lag of potentiometer
and inductive-type transducers used to measure control surface and atti-
tude gyro positions are negligible.
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Figure 9-5. Sample Pattern of Flight Tests
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Flight tests must be performed in smooth air to prevent the addition
of gast inputs. The presence of undesired inputs is detectable on the res-
pQnse to sinusoidal control inputs. The data, while not correctable, may
be usable if the distortion is obviously small. For transient response tests,
even this visual assessment of the data is not possible. Fortunately, smooth
air is generally attainable at the high altitudes, jet stream penetration be-
ing an exception. Further research into the power spectra of turbulent air
may nullify the requirement for smooth-air testing, at least for certain fre-
quency regions. Meanwhile, the requirement should be retained.

9.5.2 Test Operations. For sinusoidal oscillation testing, a pattern
for scheduling the oscillations should be established prior to flight. A
procedure which has been found to be satisfactory is to start with a frequency
at or near the lower (or upper) end of the region to be investigated. Then
move up (or down) the frequency scale, oscillating at alternate frequencies in
the pattern. At the end of the spectrum move down (or up) the scale, filling
in the frequencies skipped on the first traverse. Figure 9-6 shows this pro-
cedure graphically. One advantage to be gained is that the first and last
test points are at neighboring frequencies.

Figure 9-6. Typical Results of Sinusoidal Oscillation Testing
With No Changes In Response During The Test Period.

If flight conditions (air density, aircraft inertia, etc.) have changed sig-
nificantly during the test, it should be apparent from the data. An example
is shown in Figure 9-7. A second advantage is evident should the test flight

c q

Figure 9-7. Typical Results of Sinusoidal Oscillation Testing

With Large Changes in Response During the Test Period.
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be aborted prior to completion: half the test points will roughly define
the entire spectrum. This is generally preferable to more precise definition
of only a portion of the spectrum.

In performing transient response tests, the inputs may be performed
manually or, if automatic controls are available in the aircraft, the inputs may
be injected by a signal generator. Both methods have been employed successfully.
The former is simpler and can be easily modified in flight should the need arise.
The latter method makes possible the injection of precisely repeatable inputs.
The magnitude of the input. should be large enough to provide accurate measurement
of itself and the response, without exceeding either the "small disturbance"
conditions or safe loads on the aircraft. The requirement for accurate measure-
ment ob both input and response will be compromised somewhat at the resonant
peaks and the valleys because of small inputs and responses, respectively, in
these regions.

9.6 Data Analysis Procedures

9.6.1 Time-to-Frequency-Plane Transformation. There are available to the
engineer at least two well-known methods for transforming functions of time into
functions of frequency: the Fourier integral and the Duhamel integral. Only
the Fourier transformation will be discussed here. Application of the Duhamel
integral is treated in Reference 26.

The direct Fourier integral transformation is stated by

f (9-1)

and its inverse by

. If ' (9-2)

For systems describable by linear differential equations with constant co-
efficients, the principal of superposition applies. Stated mathematically
for the case at hand,

In, ('o)) v[~(v

where F F(t). &() as given by (9-1).

More simply, for each frequency component, Gin(w), of the input to the system

described above, there is a component, Gout(o), of the output having the same

frequency and which is due solely to Gin(w). Thus, given almost
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any* time functions F and F of a linear system, we can determine the fre-in out

quency response by means of (9-3).

Clearly, we cannot hope to evaluate the integrals in (9-1) or (9-2) over
the stated intervals. If F(t) has a constant value prior to the desired dis-
turbance, the coordinate axes may be selected such that F(t) = 0 for t -' 0.

Now the lower limit of integration may be changed to zero. We can then express
(9-1) by J St

FttIe A t (9-4)

If some finite T can be found such that F(t) = FT = constant, for t>. T, then

the second integral of (9-4) is the Fourier transform of a step function occurr- l
ing at time T and may be directly evaluated.

The major effort lies in evaluating the finite integral

( (T) e 4t (9-6)

where g(w) means the >- transform of the "initial transient", F(t) for
0 $ t -E T. The "residual transient" transforms into gr(W).

Applying the Euler relationship, e -je t = cos wt - j sin wt, puts (9-1)
into the more useful form

gcw)F F(t) Co S~ d -t) F (t)SD 5 Ati (9-7)

g(W) - ) (9-8)

The problem now is to evaluate the integrals in (9-7) when F(t) is an arbi-
trary function. This can be performed by several analogues: mechanical
harmonic analyzer (Reference 27), electromechanical Fourier synthesizer
(Reference 27), or electronic analogue computer (Reference 28 and 29). As
discussed in Reference 29, the analogue computer performs the Fourier inte-
gration rapidly and in a very straightforward fashion. Its major drawbacks
are the time-consuming preparation of F(t) for input to the computer and handl-
ing the output, and its inability to transform any transient which does not

The function, F(t) must be such that the integral in (9-1) exists; e.g.,
the integrand must converge for the range of solution required. See
Reference 21, pp. 72-80.
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vanish in a reasonably short time. The digital computer, on the other hand,
can store interim results ror further computation, such that a number of
solutions for G(w) can be performed sequentially, or simultaneously, without
reloading the input, F(t). Furthermore, it is flexible enough to handle the
entire data analysis problem with no need for any manual operations during
the entire process. The transformation can be wholly automatic from loading
the input to tabulating or plotting frequency response, including the effect of
gr(w).* The computation can, of course, be continued to include solution of

stability derivatives.

Digital evaluation of (9-7) requires that we approximate insome manner
the integrand. There is the choice of approximating F(t) cos wt and F(t) sin
wt, or of approximating only F(t). In view of the fact that the trigonometric
functions can be determined as precisely as desired and becasue their products
with F(t) will likely oscillate more rapidly than F(t) alone, it would seem that
the latter course might be more desirable. This is, in fact, the case, as
demonstrated by References 21 and 31. Approximation of F(t) can be done with
functions of any degree. Clearly we would not be justified in using any higher
degree of approximating function than is necessary to obtain the result with
sufficient accuracy. Figures 9-8a and 9-8b demonstrate the fitting of a portion
of F(t) with linear and quadratic functions, respectively.

S+3 ()A 3 -t+C *,At i&t3

r +2 
r I

I S @
At at - h

Figure 9-8. Curve Fitting Examples

while equal time intervals, At = t 2 - tI = t3 - t ... t - t_, are not

a mathematical necessity, practical considerations dictate that we use a con-
stant At for any given transformation in order to keep the computation relative-
ly simple and to retain generality of application to arbitrary functions, F(t).
As indicated by Figure 9-8, for the same value of At, the single quadratic
function better approximates F(t) than do the pair of linear functions, but
at the expense of greater complexity in fitting the curve.** Even this single

* F(t), T - t, need not be a step function, but may be any&- transform-

able function. In fact, some of the usual restrictions on the transform
can be voided as discussed in References 21 and 30.

** Fitting the approximating function to a curve consists of determining the

coefficients of the function such that it will pass through known points

on the curve: f(t1 ) ,f(t4, etc.
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2L objection becomes of little significance if we precompute a set of coefficients
which can be reused for many problems. Such a method is developed by Schumacher
in Reference 31, using quadratic approximation of F(t). This method was utiliz-
ed to compute two sets of coefficients which were applied to a number os sample
functions in Reference 29. Filon's method (Reference 32 or 33) is essentially
the same.

Where the values of F(t) must be transcribed from oscillograms by manual
or semi-automatic methods, the use of higher.-order approximation is attractive
because of the lesser number of samples, f(t), required for a given accuracy.
Use of precomputed coefficients will, for some computers, shorten the problem
time by eliminating the need to reealculate the numerous, repeated, trigonometric
functions involved. Automatic readout from magnetic tape recordings of F(t)
and high-speed digital computers make it practical to read F(t) at frequent
intervals and to use linear approximation of F(t), computing the coefficients
as they are required. The transformation can be stated as

OL(W F(t) Cos wt ht &t (s sWL

where

mAtuT

Similarly,

.(w)a -f FMt) Sin C*at =-*Ei1(*)$1" 4OC (9-10)

The advantage here is that the transformation can be made for any values of
, whereas the use of precomputed coefficients yields solutions for a pre-

determined set of values of wj.

Having determined a (w) and b(w) from (9-9) and (9-10) or by means of
References 29, 31, or 32, the end corrections ar(w) and br (W) must be applied.

A(W) - .) () (9-11)

9 W ) b b(40 4" lo r (W) (9-12)

It is generally desired to express the vector G(u) in polar form

: * (to)

GtW) % I ( ei e (9-13)

where i -_/LA.,)P ,,-t[, )3

and R ( al " " " -
~()A (W) 1IG7044

9.6.2 Techniques for Smoothing Data. The techniques for data smooth-
ing range from a simple weighting function to complex mathematical methods
which utilize the available information to various degrees. The more complex
methods seem attractive in that the smoothing of the data is theoretically
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better as a greater portion of the given information (i.e., data and noise) is
utilized in any one analysis. However, it should be pointed out that in many
cases, to make use of the larger amount of information, the complex smoothing
methods involve matnematical operations that make use of the small. difference
of large numbers. (This is common to the solution of a large number of simul-
taneous equations). This type of mathematical manipulation can result in such
large errors that the calculating weighting function is of little value for
data smoothing.

9.6.2.1 Fourier Series. A method of data smoothing is suggested by Rice in
Reference 34. He points out that random noise can be represented by Fourier
series with coefficients a and b each of which can be regarded as an inde-

n n
pendent random variable distributed about its mean value according to a normal
law. It then follows that if random noise were superimposed on a function
F(t) the new Fourier coefficients would be normally distributed about the re-
spective non-noise Fourier coefficients of F(t).

Lanczos, in Reference 35, suggests a second Fourier method which separates
the coefficients of the true data from those of the noise by means of a single
Fourier analysis of the signal. This method woiks well if the following two
conditions are true:

1. The "noisy" data can be considered to be made up of true data
on which random noise is linearly superimposed, and

2. The frequency spectra of both the true data and random noise
overlap very little.

These two methods, involving Fourier series, work very well under the
proper conditions and, in addition, lead directly into a method of analysis
that makes use of flight test data in frequency response form.

9.6.2.2 Weighting Functions. A simple weighting function technique of data
smoothing is also described in Reference 35. This technique is a standard
interpolation procedure using a simple function, (sin x/x), commonly called the
"si-function".

The choice of a weighting function is dependent upon both the type of
noise as well as the nature of the true data. If extrapolated data (i.e., data
beyond existing data, in time) were desired, the most recent data would be the
most valuable, and hence the weighting function would appear similar to:

A )

Figure 9-9. Typical "Si-function" Weighting Curve
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where A(t) is the weighting function and

A (% c (9-14)

If smoothed data are to be obtained through interpolation (i.e., data among
existing data), two different weighting functions are often used. They are:

t t+a

Figure 9-10. Weighting Functions

Lanczos, in Reference 35, gives the si-function(sin x . as a standard weight-x

ing function. In particular:

A __ ( K)

where 5 SinI

P = smoothing parameter N total number of observations
M number of degrees of freedom (harmonic)

K = number uf terms being evaluated

Ideally, a properly chosen weighting function for smoothing a signal
must account for the statistical nature of the noise, the true data, and any
coupling of the noise with the true data. The methods for obtaining theore-
tical weighting functions, which account for the above correlations, require

lengthy computations.

Wiener, in Reference 36 presents a generalized approach for smoothing
data using extensive statistical measures. The theory involves many integrals
which are rather difficult to solve with sufficient accuracy. Levinson, in an
appendix to Reference 36, presents a simplification of Wiener's work. In this
method the coefficients of the weighting function are calculated by solving a
system of linear equations which incorporate the auto- and cross-correlation
functions of the signal and of the true data.

Two variations of wiener's theory use spectral density functions in
adaition to auto- and cross-correlation functions that are slightly different
from those of Levinson's method. The first variation by Bubb is described in
Reference 37 and the second variation by Zadeh and Ragazzini is presented in
Reference 38.
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It has been found through actual application experience that the follow-
ing conclusions regarding data smoothing processes may be drawn:

1. The most practical method of obtaining true data from a signal
appears to be one that makes use of Fourier Analysis. The
Fourier Analysis method is particularly suitable for incor-
porating the distribution of the noise.

2. The simple weighting function approach (such as the "si-
function") will offer considerable smoothing in the time
domain when most of the noise spectrum consists of higher
frequencies than the true data.

3. The methods involving the more complicated weighting functions
(such as Levinson's and Bubb's) are subject to greater inaccura-
cies due To the iiihrent mathematical -lifficulties. (These diffi-
culties include such items as the inaccuracies that arise from
solving a high order number of simultaneous equations containing
small differences of large numbers, approximations of spectral
densities by specific analytic forms, and convergence of power
6seriLe ,asia -n tin.P..trie diata. These methods require
high capacity computing facilities.)

9.6.3 Techniques for Analyzing Dynamic Flight Test Data. it has been
found convenient to devise the following block diagram as a means of identify-
ing and segregating the various techniques for analyzing dynamic flight test
data.

TRANSIE~TFRQEC

RESP-ONSE RESPONSE

DATA A DATA

TRANSFER
FUNCTION

COEFFICIENTS

E

AERODYNAMIC

COEFFICIENTS

Figure 9-11. Block Diagram for Identifying and Segregating Tech-
niques for Determining Aerodynamic Coefficients from
Dynamic Flight Test Data.
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In Figure 9-11 the lines labelled A and A' indicate the methods for time-
to-frequency domain conversion, and vice versa. Two methods of performing the
domain conversion of "A" are presented in References 31 and 39. The domain
conversion of line A' can be done by methods explained in References 40 and 41.
The techniques for determining transfer function coefficients from transient
response data are indicated by line B. In addition, the techniques for deriving
aerodynamic coefficients from transient response data, via the transfer function
coefficients, also include the methods indicated by line E. The complete tech-
nique in this case is designated as B-E. On the other hand, path D represents
the techniques for determining the aerodynamic coefficients directly from the
transient response data without having to first determine the transfer function
coefficients. Alternates C (with E) and F are representative of those methods
which incorporate frequency response data.

The techniques represented (in Fig. 9-11) are applicable to two basic
types of dynamic flight test data. These types are shown by the blocks de-
signated as follows:

1. Transient response data, which is dynamic flight test data obtain-
ed by recording the transient responses to various types of inputs such as:

a. Control surface pulses that are asymmetrical and/or arbitrary
in shape,

b. Control surface step inputs, and

c. Other inputs with the control surfaces either fixed or free, as
for example in the case of missiles firing cartridges at right
angles to the flight path.

2. Frequency response data, which is dynamic flight test data obtained
by recording forced steady-state responses of the aircraft or missile to
sinusoidalinputs.

It should be pointed out that the analysis methods presented in the
following sections (i.e., 9.6.3.1 and 9.6.3.2) are based upon rigid body
equations of motion and only two degrees of freedom. The reason for this is
that the number of unknowns to be solved for is small enough that the solution
yields reasonably accurate values for the unknowns. If these methods are used
to analyze the responses of elastic aircraft the values obtained for the un-
knowns (transfer function coefficients or stability derivatives) will contain
the effects of elasticity. These unknowns are usually terms as "modified trans-
fer function coefficients" (or modified stability derivatives). If the analysis
methods were extended to account for the elasticity, the number of unknowns
that would then have to be solved for would be so large it would be almost im-
possible to obtain accurate answers.

9.6.3.1 Methods for Determining Aerodynamic Coefficients from Transient Data.

a. Derivative Method as applied to the Transfer Functions (See Re-
ference 42).

If the assumed form of the transfer function is
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qC, p+C c.9-16)

- e 2+i-

it is possible to determine the parameters b, k, C and CI  from four sets

q q
of simultaneous measurements. The above equation can be written as

°1 (9-17)

This can be integrated once by dividing through by p which gives

-Pe 00 C itSe -ot fse-(9-18)

If the subscript I denotes the value of a quantity at t = tI etc., then four

simultaneous equations for the parameters b, k, C1 and C can be obtained

q 2  q a t
from four sets of simultaneous measurements of e, pO, p e, be and- - dt by

making the proper substitutions in Equation (9-16). The equations are as follows:

~ cI9~ ~ 4 &t~o (9-19) I

If it is desirable to use more data (taken at more than four time instants)
then a method of least squares may be used to compute values of b, k, C and

2 q
C such that I E. is a minimum,

0 1q

where

(9-20)
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Th6 normal equations are:

~ (e)~b + ZP)L e i ?)(
i. ani C,

-b C,( (6%

1 P e)L ;b V8( je - 1(ae~ i G e~1C - eZ( )( t )

(9-21)
The derivative method can also be applied to the response to a unit

step input in 8.e For a step response the differential equation relating

e and8 5 is&b~oc Ct O'

F (9-22)

The normal equations resulting from the minimizing of 2 E2 are

" L

(9-23)
~(eb+rQL~ C1 ~ tL CN= 9

(POi ti b a a.

where N is the number of time instants at which the variables are known.

If the same procedure is applied to the transfer function

= C2  +P2 'IP e, (9-24)

the coefficients C2 , C and C car. also be determined.
n n On
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The relationships between the transfer function coefficients and the sta-
bility derivatives are presented in the nomenclature. The stability derivatives
may be determined from the transfer function coefficients by the process of
simultaneous solution indicated by Path E in Figure 9-11. In making this
simultaneous solution it is important that the number of unknown stability
derivatives to be solved for be no more than the number of transfer function
coefficients available. If the number of stability derivatives is greater, the
number can usually be reduced by assuming reasonable values for some of the
better known stability derivatives such as static derivatives (i.e., Z and/or

M).

b. Matrix Method of Determining Aerodynamic Coefficients from Tran-
sient Flight Data. (See Reference 43).

Consider the equation

S. (9-25)

This can be rewritten as follows:

4'OP2 +bp 2  PO+ ~aci~ C
(9-26)

where and __an

If the above equation is multiplied by -2 the integral form of the

rearranged equation can be written as,

t t
be+1 -CtC. . ti (9-2-7)

In principle, to solve this equation for the coefficients, it is only
necessary to tabulate the recorded values of 0, e and 6 at a number of pointse
t, t 2 --- t, along a given time history and perform the indicated integra-

tions from t = 0 to t = t i .

A number of simultaneous equations containing the unknown constants are
then solved. The number of equations can vary from a minimum, in which the
number of ordinates is equal to the number of constants, to the case where
there are many more equations than unknowns. When the number of ordinates
equals the number of unknown coefficients, the usual methods of solving simul-
taneous equations may be used to obtain the coefficients. However, when there
are more equations than unknowns, a least-squares method is often used to re-
duce the equations. Since the best average value of the coefficients is ob-
tained when many points along the time history are used, a least-squares pro-
cedure is generally preferable.
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The indicated integration can either be done graphically or by a numeri-
cal process. If the latter is chosen, a matrix method of solution proves quite
convenient.

The matrix form of the above equation may be written:

~:je t -j jj~ s~t~ ~)(9-28)

r S a d t A I ,

0 /
f SedJt -r it i

J. It 4.., -f o '

In shorter form this expression can be rewritten as:

(9-29)

where the matrix PAII is in general a rectangular matrix; that is, for every
ti, one equation or one row of the matrix 1AP is obtained.

The individual elements of matrix PAII are evaluated from known values
of e and 5 • As mentioned previously, the integration may be performed graphi-
cally, bute it is more convenient to use integrating matrices. These integrat-
ing matrices are derived in Reference 44. Any element in the rectangular

matrix such as a dg aie se gdt may be expressed in matrix

-a Jdt
. o ) '

" o (9-30)

After the elements of matrix II A i have been determined either by apply-
ing the integrating matrix or by graphical integration, a method of least-
squares can be applied to the solution of the system of simultaneous equations.
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In matrix notation the least-squares solution involves multiplication of matrix
I Al by its transpose IA'If so that

iAl Jlb",ic'Iv Co t§! (9-31)

becomes

A] C'A (9-32)

This equation can now be arranged to be solved directly for the coefficients

by multiplying by the inverse matrix A'A "
. This gives

The application of this matrix method may be applied to the transfer functions
n/5e in a similar manner. The resulting equation would be:

bf dz +,f )Idaidt - C cif, At-C.j S ct L

The aerodynamic coefficients are then evaluatr.! by a simultaneous
solution of the transfer function coefficients, providing that the mass
and inertia are known.

c. Derivative Method as Applied to the Equations of Motion.

If the assumed form of the lift equation is:

7- z, -(,.,,,+ ,- ) Z-

it is possible to determine the aerodynamic coefficients Z , Z and Z from
e

three sets of simultaneous measurements. The equation above can be written as:

v., - Z -(U,,+ Z " )- -(9-36)

If the subscript 1 denotes the value of a quantity at t = tl, etc., then
three simultaneous equations are obtained by the proper substitution of three
sets of simultaneous values for pa, a, q and 8e (a and & are difficult to gn.

measure directly but can be computed by making use of the relation, & = q - -
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'The equations are as follows:

-7 0(

Um(e" )3 -Zt -(U +z,) -Z s 03 =

If it is desirable to use more data (taken at more than three time in-
stants) then, as previously indicated, a method of least-squares may be used
to compute values of Z , Z and Z e The equations are:

U ~M(P't)~i Z4 06 (U +Z)j ~ - 0
-{zm + z z,-

This same procedure can be applied to the moment equation to solve for M
M and M5  .

e

9.6.3.2 Methods for Determining Aerodynamic Coefficients from Frequency Re-
sponse Data.

a. Sinusoidal (Frequency) Response (See Reference 42).

This technique is applicable to data that consists of amplitude ratios
and phase shifts (between the input and output response) over a given fre-
quency range. For example, in the case of longitudinal motion with two de-
frees of freedom, the transfer function between pitching velocity q and
elevator angle 8 has been shown to be:

__ .(9-39)

If b = 6 sin wt and q = R sin wt + q = A sin wt + B cos wt,e e 8
o e

0
then it can be shown that A +iB is the value of the transfer function when
p = iW. If the proper substitutions are made in the above transfer function
the following equation if obtained:
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A (A- w ) - b w+ +A +.9-0

Equating the real and imaginary parts results in the two equations:

AA-BtU6C --Aw Real equation

(9-41)

BA A C C WA=50 °.- Imaginary equation

if the values of A and B are known at two frequencies, then it is
possible to set up four simultaneous equations in four unknowns b, k, C and
C1  as follows: qq A I R - 5 1 W 1 6, - CO I -, J ,

2.

SA, b - UJI C1  (, (9-42)

where A1 , A2, B1, B2 are the values of A and B at wl and w2. The solution

of these equations for the values of b, k, C1  and C should yield a frequency
0

q q
response curve that agrees with the measured curve at the two frequencies select-
ed. This has been called the "'method of selected points."

Better values for b, k, C and C can be obtained by using data measured

q q
at more than two frequencies. A method of least-squares is used to calculate

values of the parameters that make E + 1E 2  a minimum where ER and E

are defined by:

(9-43)
+ A Ucb - co . w'
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This leads to the following set of normal equations:

W.ZBWC - -Aw~c =

S 4 i.1 AA+

(9-4 4)

where N equals the number of frequencies and the summation is taken over all
the frequencies at which daLa are obtained.

If the phase and amplitude of the normal acceleration response to sinu-
soidal elevator motion is measured, the coefficients of the transfer function

'2  icn C

Se+

can be determined in a similar manner.

The aerodynamic coefficients can then be evaluated by a simultaneous
solution of the transfer function coefficients. (This assumes the mass and
inertia are known.)

b. Sinusoidal (Frequency) Response as Applied to the Equations of Motion.

If the frequency responses q/. and q/. are available, they
e e

can be converted into the following:

S' LoSe (9-46)

Also, the lift equation of motion,

can be rewritten as

('i.r"W -Z9 It/Se (Iv + z) j+ - z
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Then substituting equations (9-46) in equation (9-47) the following is
obtained:

(-Urn d Z )(A + B ) -(Lz )(CY D) Ze P

(9-48)

Equating the real and imagiuery parts results in the two equations:

ZdA VMJ W 8 '. r C -ZI c- z Se=o Real Equation

(9-49)
- A - J - P n ? D "-o Imaginary Equation

If the mass, the inertia and the values of A, B, C and D are known at
two frequencies, then it is possible to set up four simultaneous equations,
and solve for the unknowns Z , Z and Z5 , using any three of the four equa-

e

tions. The equations are:

e-o

-Z Az - O (Vw~ -(+. z C -Z =0

-ZdLA/U4O )Cz =

(9-50)

v,' Az - zd - (vvn. z, )D. -

where AD, A B, ,  D and D are the values at frequencies ui and-

w2 . The solution of these equations gives the values of Z, , Zq and Z

corresponding to a frequency response curve that agrees exactly with the mea-
sured curve at the two frequencies selected.

Better values for and Z can be obtained by using data measured
e

at more than two frequencies. A method of least-squares is used in this case

WADC T, 55-173 481



to evaluate the aerodynamic coefficients. The procedure outlined above can
also be used to determine the coefficients (M , M and M ) from the momentequation. q e/

The foregoing material has indicated that the least-squares solution is
preferable to using the "method of selected frequencies" (or selected times).
However, the circumstances should be pointed out under which one could obtain
ill-conditioned equations (and matrices), The samples selected should contain
significant values of all the variables; otherwise the "noise" (errors) may
obscure some values. In the frequency dpmain, values obtained in the regions
of resonance should give better "signal to error" ratios. On the other hand,
if all the data points are taken from too narrow a frequency band, the fitting
of the coefficients to the frequency response curve will be inaccurate. Thus
sane compromise is indicated. Also, for example, in a two-degree-of-freedom
longitudinal case, using data at low frequencies, introduces errors due to speed
changes (which are not accounted for by the equations). The response at fre-
quencies well above resonance is small and leads to errors due to poor resolu-
tion (low signal-to-error or signal-to-noise ratios).

If data in the time dcmain contains noise it is sometimes difficult to
select good data points. The primary asset of going through the transformation
to the frequency domain is that good data can be separated from the noise (parti-
cularly when the frequency spectrum of the noise is well separated from the
spectrum of the desired data). However, if data in the time domain must be used,
take a sufficient number of samples so as to well define the time history and
also have unequal time intervals between the samples.

9.6.3.3 Simplified Analysis Procedures. Sometimes when a fairly clear-cut
mode can be seen in the frequency response of an aircraft, it is desirable to
be able to at least determine the effective viscous damping and spring con-
stants of the mode. If the mode in question is well separated from the other
modes, the fre4uency response in the regime of the natural frequency of the
mode usually behaves as a second order system. As an example of how such an
analysis would be conducted consider the following example of the rigid-body
response of an aircraft which is well separated in frequency from the elastic
modes: (The same technique could be applied to an elevator response mode whose
natural frequency is much higher and well separated than the rigid-body motion
which would affect the elevator response in the lower frequency regime.)

The equation of motion for the normal acceleration of the airplane at the
center of gravity can be written as-

6 i. e Z e)IM 6 (9-51)
where

b = effective viscous damping for the airplane (short period motion) mode,
k - effective spring constant for the airplane mode, and
I m= the "imaginary part of".

The frequency response may be written as:

Se V (A - W a) 2+W2 e (9-52)
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I

whereLA6
•) -

The imaginary component of the above vector at any frequency is

(5-- ( , , ., e =

L! _ x_ (9-53)

since

Differentiating I with respect to w , and setting the result equal
m 8e

to zero, we obtain:

If we let b -

A

where =- .. - effective viscous damping ratioC

and a - ' -X the frequency at which the L A no,) *

then W2')Z+4WZ 01)=4 W2''L (9-55)

Rewriting gives

4 ( & L -( :4 (9-56)
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and if we let

whe re w= 2irx frequency of the maximum departure in the imaginary

direction,

then ~( 1 +e~).
(9-57)

4#•  (9-58)

Having determined and w , b and k may be evaluated.

9.6.4 Techniques for Performing Error Analyses. An error analysis pro-
vides a means for determining the errors in the final results of any method
of data analysis used. The error, analysis can take into account the errors
of the initial flight test data as well as the errors that arise from the
mathematical manipulations within the data analysis method. There are two very
useful types of' error analyses that will be covered in the following pages.
One determines the maximum error while the other determines the probable error
present in the results of a data analysis method.

The theory involved in these analyses is concerned principally with the
errors that are derived from the solution of a set of simultaneous equations
(i.e., the errors that arise in the results due to the initial errors in the
coefficients of the equations to be solved simultaneously).

A system of simultaneous equations can be written symbolically as follows:

. . X 01. .(9-59)

where the a.. have initial errors (due to the errors in the flight test data)

and the xi are the unknowns which include the final er.ors. The errors can

be related similarly (for relatively small errors):

WADC )R 5-13+ (49-60)j= .L j.1€i Cj . ,
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n 4(9-61)

Hence a simultaneous set of algebraic equations can be found by Equation (9-61),
(where the N. are constants) from which the final errors, d can be calcu-
lated. 1 1

Since the initial errors, da , can be either positive or negative,

the sutmmation for the N. must consist of the absolute values for the maxi-

mum error analyses. Equation (9-61) is modified as follows:

ta...2- . I + Fci 1(9-62)

Harmonic averages of precision factors, h , are involved in computing

the N. constants for the probable error analyses (i.e., each N, is
1 1 prob.

the probable error for the combination of n + 1 initial probable errors;
daij ; j = 1, 2. ...... , n + 1). The precision factors, hij , are related

to the initial probable errors, dai , by the equation:

&. :...,L. where p - .4769 (9-63)

The harmonic average is:

*~~ L. (x)2 ( , Ifl ()

(9-64i)
where the Ni prob. are related to the h as in Equation (9-63):

j . Ob - I'J. Lj "1 Lro pP - -(..

Therefore Equation (9-61) is replaced, for the probable error analyses, by
Equation (9-65) which incorporates Equations (9-63) and (9-64). See References
45 and 46 for the theory involved in Equations (9-63) and (9-65).
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NO14ENCLATURE

General

angle of attack, radians

A,B in- and out-of-phase components of oscillation

d
p differential operator d-

b elevator deflection, radianse

E residual error in an equation

g acceleration due to gravity

e angle of pitch, radians

I ypitching moment of inertia, slug-feet squared

L lift force pounds

L (

L

m mass of airplane, slugs

M pitching moment, foot-pounds

MM
M;

a

M

M 3M
Mq

relative density parameter m 2Xmass
reaec density X wing area Xwing chord

n normal acceleration, g units

q angular pitching velocity, radians per second

R, q) amplitude and phase of complex number

t time seconds
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U velocity of airplane, feet par second

W weight of airplane, pounds

W angular frequency, radians pe:' 3iond

Transfer-F fnct1i0 ,.1 , efficients

b damping parameter M mc

y o
-L f

C8CI mU
cxo

0
M L M

I I y oU0

M L5 M

C + -

mU Iy
oa iy o

C0 m~U "y 0~

n q g U

cl (cI  _c° 0 o
n 9

C,-C 0
n M L M

k stiffness parameter Fa - mU I-"
y 0 y
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